Adding documentation for ABC models
This commit is contained in:
Родитель
5dafee0b24
Коммит
5fd7cc6d5a
78
README.md
78
README.md
|
@ -1,6 +1,21 @@
|
|||
# Subseasonal Forecasting Toolkit
|
||||
|
||||
The `subseasonal_toolkit` package provides implementations of the subseasonal forecasting toolkit models, machine learning models, and meteorological baselines presented in the preprint
|
||||
The `subseasonal_toolkit` package provides implementations of the subseasonal forecasting ABC model of
|
||||
|
||||
[Adaptive Bias Correction for Subseasonal Forecasting](https://arxiv.org/pdf/.pdf)
|
||||
Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Judah Cohen, Miruna Oprescu, Ernest Fraenkel, and Lester Mackey. Sep. 2022.
|
||||
|
||||
```
|
||||
@article{
|
||||
mouatadid2022adaptive,
|
||||
title={Adaptive Bias Correction for Subseasonal Forecasting},
|
||||
author={Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Judah Cohen, Miruna Oprescu, Ernest Fraenkel, and Lester Mackey},
|
||||
journal={arXiv preprint arXiv:},
|
||||
year={2022}
|
||||
}
|
||||
```
|
||||
|
||||
and the machine learning models and meteorological baselines of
|
||||
|
||||
[Learned Benchmarks for Subseasonal Forecasting](https://arxiv.org/pdf/2109.10399.pdf)
|
||||
Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen, Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, and Lester Mackey. Sep. 2021.
|
||||
|
@ -24,30 +39,57 @@ Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah
|
|||
|
||||
The following examples demonstrate how to generate contiguous US forecasts for the target dates evaluated in "Learned Benchmarks for Subseasonal Forecasting" using each implemented model.
|
||||
|
||||
- ABC:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m abc`
|
||||
- AutoKNN:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m autoknn`
|
||||
- CCSM4++:
|
||||
- First generate predictions for each model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ccsm4pp`
|
||||
- Then select a model configuration using the tuner
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m ccsm4pp`
|
||||
- CFSv2++:
|
||||
- First generate predictions for each model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -u -b -m cfsv2pp`
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m cfsv2pp`
|
||||
- Then select a model configuration using the tuner
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -tu -m cfsv2pp`
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m cfsv2pp`
|
||||
- Climatology:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m climatology`
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m climatology`
|
||||
- Climatology++:
|
||||
- First generate predictions for each model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -u -b -m climpp`
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
|
||||
- Then select a model configuration using the tuner
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -tu -m climpp`
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m climpp`
|
||||
- Debiased CFSv2:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m deb_cfsv2`
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_cfsv2`
|
||||
- Debiased ECMWF Control and Ensemble:
|
||||
- First, select your desired source (control or ensemble) for debiasing and forecasting in `subseasonal_toolkit/models/deb_ecmwf/selected_submodel.json` by setting the `forecast_with` and `debias_with` keys as described in `deb_ecmwf.ipynb`.
|
||||
- Then, run the selected model: `python -m subseasonal_toolkit.generate_predictions -t std_paper_ecmwf -e -u -m deb_ecmwf`
|
||||
- Then, run the selected model: `python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_ecmwf`
|
||||
- ECMWF++:
|
||||
- First generate predictions for each model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ecmwfpp`
|
||||
- Then select a model configuration using the tuner
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_ecmwf -e -u -tu -m ecmwfpp`
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m ecmwfpp`
|
||||
- FIMr1p1++:
|
||||
- First generate predictions for each model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m fimr1p1pp`
|
||||
- Then select a model configuration using the tuner
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m fimr1p1pp`
|
||||
- GEFS++:
|
||||
- First generate predictions for each model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m gefspp`
|
||||
- Then select a model configuration using the tuner
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m gefspp`
|
||||
- GEOS++:
|
||||
- First generate predictions for each model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m geos_v2p1pp`
|
||||
- Then select a model configuration using the tuner
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m geos_v2p1pp`
|
||||
- GEPS++:
|
||||
- First generate predictions for each model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m gepspp`
|
||||
- Then select a model configuration using the tuner
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m gepspp`
|
||||
- Informer:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m informer`
|
||||
- LocalBoosting:
|
||||
|
@ -63,10 +105,22 @@ The following examples demonstrate how to generate contiguous US forecasts for t
|
|||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m online_learning`
|
||||
- Persistence:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m persistence`
|
||||
- Persistence++ CCSM4:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m perpp_ccsm4`
|
||||
- Persistence++ CFSv2:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m perpp_cfsv2`
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m perpp_cfsv2`
|
||||
- Persistence++ ECMWF:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_ecmwf -e -u -m perpp_ecmwf`
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m perpp_ecmwf`
|
||||
- Persistence++ FIMr1p1:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_fimr1p1 -u -e`
|
||||
- Persistence++ GEFS:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_gefs -u -e`
|
||||
- Persistence++ GEOS_v2p1:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_geos_v2p1 -u -e`
|
||||
- Persistence++ GEPS:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_geps -u -e`
|
||||
- Persistence++ NESM:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_nesm -u -e`
|
||||
- Prophet:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m prophet`
|
||||
- Salient2:
|
||||
|
@ -75,7 +129,7 @@ The following examples demonstrate how to generate contiguous US forecasts for t
|
|||
- Then select a model configuration using the tuner
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -tu -m salient2`
|
||||
- Uniform Ensemble:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m linear_ensemble`
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m linear_ensemble`
|
||||
|
||||
## For Developers
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче