Adding documentation for ABC models

This commit is contained in:
Lester Mackey 2022-09-22 20:45:08 -04:00 коммит произвёл GitHub
Родитель 5dafee0b24
Коммит 5fd7cc6d5a
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 66 добавлений и 12 удалений

Просмотреть файл

@ -1,6 +1,21 @@
# Subseasonal Forecasting Toolkit
The `subseasonal_toolkit` package provides implementations of the subseasonal forecasting toolkit models, machine learning models, and meteorological baselines presented in the preprint
The `subseasonal_toolkit` package provides implementations of the subseasonal forecasting ABC model of
[Adaptive Bias Correction for Subseasonal Forecasting](https://arxiv.org/pdf/.pdf)
Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Judah Cohen, Miruna Oprescu, Ernest Fraenkel, and Lester Mackey. Sep. 2022.
```
@article{
mouatadid2022adaptive,
title={Adaptive Bias Correction for Subseasonal Forecasting},
author={Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Judah Cohen, Miruna Oprescu, Ernest Fraenkel, and Lester Mackey},
journal={arXiv preprint arXiv:},
year={2022}
}
```
and the machine learning models and meteorological baselines of
[Learned Benchmarks for Subseasonal Forecasting](https://arxiv.org/pdf/2109.10399.pdf)
Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen, Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, and Lester Mackey. Sep. 2021.
@ -24,30 +39,57 @@ Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah
The following examples demonstrate how to generate contiguous US forecasts for the target dates evaluated in "Learned Benchmarks for Subseasonal Forecasting" using each implemented model.
- ABC:
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m abc`
- AutoKNN:
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m autoknn`
- CCSM4++:
- First generate predictions for each model configuration
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ccsm4pp`
- Then select a model configuration using the tuner
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m ccsm4pp`
- CFSv2++:
- First generate predictions for each model configuration
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -u -b -m cfsv2pp`
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m cfsv2pp`
- Then select a model configuration using the tuner
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -tu -m cfsv2pp`
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m cfsv2pp`
- Climatology:
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m climatology`
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m climatology`
- Climatology++:
- First generate predictions for each model configuration
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -u -b -m climpp`
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
- Then select a model configuration using the tuner
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -tu -m climpp`
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m climpp`
- Debiased CFSv2:
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m deb_cfsv2`
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_cfsv2`
- Debiased ECMWF Control and Ensemble:
- First, select your desired source (control or ensemble) for debiasing and forecasting in `subseasonal_toolkit/models/deb_ecmwf/selected_submodel.json` by setting the `forecast_with` and `debias_with` keys as described in `deb_ecmwf.ipynb`.
- Then, run the selected model: `python -m subseasonal_toolkit.generate_predictions -t std_paper_ecmwf -e -u -m deb_ecmwf`
- Then, run the selected model: `python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m deb_ecmwf`
- ECMWF++:
- First generate predictions for each model configuration
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ecmwfpp`
- Then select a model configuration using the tuner
`python -m subseasonal_toolkit.generate_predictions -t std_paper_ecmwf -e -u -tu -m ecmwfpp`
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m ecmwfpp`
- FIMr1p1++:
- First generate predictions for each model configuration
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m fimr1p1pp`
- Then select a model configuration using the tuner
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m fimr1p1pp`
- GEFS++:
- First generate predictions for each model configuration
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m gefspp`
- Then select a model configuration using the tuner
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m gefspp`
- GEOS++:
- First generate predictions for each model configuration
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m geos_v2p1pp`
- Then select a model configuration using the tuner
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m geos_v2p1pp`
- GEPS++:
- First generate predictions for each model configuration
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m gepspp`
- Then select a model configuration using the tuner
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -tu -m gepspp`
- Informer:
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m informer`
- LocalBoosting:
@ -63,10 +105,22 @@ The following examples demonstrate how to generate contiguous US forecasts for t
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m online_learning`
- Persistence:
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m persistence`
- Persistence++ CCSM4:
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m perpp_ccsm4`
- Persistence++ CFSv2:
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m perpp_cfsv2`
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m perpp_cfsv2`
- Persistence++ ECMWF:
`python -m subseasonal_toolkit.generate_predictions -t std_paper_ecmwf -e -u -m perpp_ecmwf`
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -u -e -m perpp_ecmwf`
- Persistence++ FIMr1p1:
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_fimr1p1 -u -e`
- Persistence++ GEFS:
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_gefs -u -e`
- Persistence++ GEOS_v2p1:
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_geos_v2p1 -u -e`
- Persistence++ GEPS:
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_geps -u -e`
- Persistence++ NESM:
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -m perpp_nesm -u -e`
- Prophet:
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m prophet`
- Salient2:
@ -75,7 +129,7 @@ The following examples demonstrate how to generate contiguous US forecasts for t
- Then select a model configuration using the tuner
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -tu -m salient2`
- Uniform Ensemble:
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m linear_ensemble`
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -m linear_ensemble`
## For Developers