Bug Fix: Data Diagnosis - Fix bug of failure test and warning of pandas in data diagnosis (#638)

**Description**
Fix bug of failure test and warning of pandas in data diagnosis.

**Major Revision**
- fix warning of pandas in replace and fillna due to type downcast
- fix bug of failure check function only check one matched metric rather
than all matched metrics
- fix bug when converting regex into str of metrics when there're more
than one match group
This commit is contained in:
Yuting Jiang 2024-08-16 09:04:24 +08:00 коммит произвёл GitHub
Родитель 46a5792915
Коммит 7af75df392
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
3 изменённых файлов: 13 добавлений и 11 удалений

Просмотреть файл

@ -243,7 +243,7 @@ def aggregate(raw_data_df, pattern=None):
match = re.search(pattern, metric)
if match:
metric_in_list = list(metric)
for i in range(1, len(match.groups()) + 1):
for i in range(len(match.groups()), 0, -1):
metric_in_list[match.start(i):match.end(i)] = '*'
short = ''.join(metric_in_list)
if short not in metric_store:

Просмотреть файл

@ -262,9 +262,8 @@ class DataDiagnosis(RuleBase):
all_data_df = data_not_accept_df[[
append_columns[index]
]].merge(all_data_df, left_index=True, right_index=True, how='right')
all_data_df['Accept'] = all_data_df['Accept'].replace(np.nan, True)
all_data_df['Number Of Issues'] = all_data_df['Number Of Issues'].replace(np.nan, 0)
all_data_df['Number Of Issues'] = all_data_df['Number Of Issues'].astype(int)
all_data_df['Accept'] = all_data_df['Accept'].replace(np.nan, 1).astype('bool')
all_data_df['Number Of Issues'] = all_data_df['Number Of Issues'].replace(np.nan, 0).astype('int')
return all_data_df
@ -296,7 +295,7 @@ class DataDiagnosis(RuleBase):
data_not_accept_df (DataFrame): the DataFrame to output
output_path (str): the path of output jsonl file
"""
data_not_accept_df = data_not_accept_df.convert_dtypes().astype('object').fillna(self.na)
data_not_accept_df = data_not_accept_df.convert_dtypes().astype('object').infer_objects().fillna(self.na)
p = Path(output_path)
try:
data_not_accept_json = data_not_accept_df.to_json(orient='index')
@ -327,7 +326,7 @@ class DataDiagnosis(RuleBase):
data_not_accept_df (DataFrame): the DataFrame to output
output_path (str): the path of output jsonl file
"""
data_not_accept_df = data_not_accept_df.convert_dtypes().astype('object').fillna(self.na)
data_not_accept_df = data_not_accept_df.convert_dtypes().astype('object').infer_objects().fillna(self.na)
data_not_accept_df = data_not_accept_df.reset_index()
data_not_accept_df = data_not_accept_df.rename(
columns={
@ -378,7 +377,7 @@ class DataDiagnosis(RuleBase):
data_not_accept_df = data_analysis.round_significant_decimal_places(
data_not_accept_df, round, [metric]
)
data_not_accept_df = data_not_accept_df.convert_dtypes().astype('object').fillna(self.na)
data_not_accept_df = data_not_accept_df.convert_dtypes().astype('object').infer_objects().fillna(self.na)
lines = file_handler.generate_md_table(data_not_accept_df, header)
return lines

Просмотреть файл

@ -239,19 +239,22 @@ class RuleOp:
violated_metric_num = 0
for metric_regex in raw_rule['metrics']:
match = False
violate = False
for metric in rule['metrics']:
if re.search(metric_regex, metric):
match = True
# metric not in raw_data or the value is none, miss test
if metric not in data_row or pd.isna(data_row[metric]):
violated_metric_num += 1
break
if RuleOp.miss_test(metric, rule, data_row, details, categories):
violate = True
# metric_regex written in rules is not matched by any metric, miss test
if not match:
violated_metric_num += 1
violate = True
RuleOp.add_categories_and_details(metric_regex + '_miss', rule['categories'], details, categories)
if violate:
violated_metric_num += 1
# return code != 0, failed test
violated_metric_num += RuleOp.value(data_row, rule, summary_data_row, details, categories)
details[:] = list(dict.fromkeys(details)) # remove duplicate details
return violated_metric_num