update
This commit is contained in:
Родитель
9869311cbb
Коммит
d1ce9c6771
|
@ -443,3 +443,15 @@ class ModelBenchmark(Benchmark):
|
|||
"""Print environments or dependencies information."""
|
||||
# TODO: will implement it when add real benchmarks in the future.
|
||||
pass
|
||||
|
||||
def _log_step_time(self, curr_step, precision, start, end):
|
||||
"""Log step time into stdout regularly.
|
||||
|
||||
Args:
|
||||
curr_step (int): the index of the current step
|
||||
precision (Precision): precision of model and input data, such as float32, float16.
|
||||
start (float): the start timestamp of the current step
|
||||
end (float): the end timestamp of the current step
|
||||
"""
|
||||
if self._args.log_every_steps and curr_step % self._args.log_every_steps == 0:
|
||||
print(f'{self._name} - {precision.value}: step {curr_step}, step time {(end - start) * 1000}')
|
||||
|
|
|
@ -148,9 +148,7 @@ class PytorchBERT(PytorchBase):
|
|||
self._optimizer.step()
|
||||
end = self._timer()
|
||||
curr_step += 1
|
||||
if self._args.log_every_steps:
|
||||
if curr_step % self._args.log_every_steps == 0:
|
||||
print(f'{self._name} - {precision.value}: step {curr_step}, step time {(end - start) * 1000}')
|
||||
self._log_step_time(curr_step, precision, start, end)
|
||||
if curr_step > self._args.num_warmup:
|
||||
# Save the step time of every training/inference step, unit is millisecond.
|
||||
duration.append((end - start) * 1000)
|
||||
|
@ -179,11 +177,7 @@ class PytorchBERT(PytorchBase):
|
|||
self._model(sample)
|
||||
end = self._timer()
|
||||
curr_step += 1
|
||||
if self._args.log_every_steps:
|
||||
if curr_step % self._args.log_every_steps == 0:
|
||||
print(
|
||||
f'{self._name} - {precision.value}: step {curr_step}, step time {(end - start) * 1000}'
|
||||
)
|
||||
self._log_step_time(curr_step, precision, start, end)
|
||||
if curr_step > self._args.num_warmup:
|
||||
# Save the step time of every training/inference step, unit is millisecond.
|
||||
duration.append((end - start) * 1000)
|
||||
|
|
|
@ -111,9 +111,7 @@ class PytorchCNN(PytorchBase):
|
|||
self._optimizer.step()
|
||||
end = self._timer()
|
||||
curr_step += 1
|
||||
if self._args.log_every_steps:
|
||||
if curr_step % self._args.log_every_steps == 0:
|
||||
print(f'{self._name} - {precision.value}: step {curr_step}, step time {(end - start) * 1000}')
|
||||
self._log_step_time(curr_step, precision, start, end)
|
||||
if curr_step > self._args.num_warmup:
|
||||
# Save the step time of every training/inference step, unit is millisecond.
|
||||
duration.append((end - start) * 1000)
|
||||
|
@ -143,11 +141,7 @@ class PytorchCNN(PytorchBase):
|
|||
self._model(sample)
|
||||
end = self._timer()
|
||||
curr_step += 1
|
||||
if self._args.log_every_steps:
|
||||
if curr_step % self._args.log_every_steps == 0:
|
||||
print(
|
||||
f'{self._name} - {precision.value}: step {curr_step}, step time {(end - start) * 1000}'
|
||||
)
|
||||
self._log_step_time(curr_step, precision, start, end)
|
||||
if curr_step > self._args.num_warmup:
|
||||
# Save the step time of every training/inference step, unit is millisecond.
|
||||
duration.append((end - start) * 1000)
|
||||
|
|
|
@ -142,9 +142,7 @@ class PytorchGPT2(PytorchBase):
|
|||
self._optimizer.step()
|
||||
end = self._timer()
|
||||
curr_step += 1
|
||||
if self._args.log_every_steps:
|
||||
if curr_step % self._args.log_every_steps == 0:
|
||||
print(f'{self._name} - {precision.value}: step {curr_step}, step time {(end - start) * 1000}')
|
||||
self._log_step_time(curr_step, precision, start, end)
|
||||
if curr_step > self._args.num_warmup:
|
||||
# Save the step time of every training/inference step, unit is millisecond.
|
||||
duration.append((end - start) * 1000)
|
||||
|
@ -173,11 +171,7 @@ class PytorchGPT2(PytorchBase):
|
|||
self._model(sample)
|
||||
end = self._timer()
|
||||
curr_step += 1
|
||||
if self._args.log_every_steps:
|
||||
if curr_step % self._args.log_every_steps == 0:
|
||||
print(
|
||||
f'{self._name} - {precision.value}: step {curr_step}, step time {(end - start) * 1000}'
|
||||
)
|
||||
self._log_step_time(curr_step, precision, start, end)
|
||||
if curr_step > self._args.num_warmup:
|
||||
# Save the step time of every training/inference step, unit is millisecond.
|
||||
duration.append((end - start) * 1000)
|
||||
|
|
|
@ -151,9 +151,7 @@ class PytorchLSTM(PytorchBase):
|
|||
self._optimizer.step()
|
||||
end = self._timer()
|
||||
curr_step += 1
|
||||
if self._args.log_every_steps:
|
||||
if curr_step % self._args.log_every_steps == 0:
|
||||
print(f'{self._name} - {precision.value}: step {curr_step}, step time {(end - start) * 1000}')
|
||||
self._log_step_time(curr_step, precision, start, end)
|
||||
if curr_step > self._args.num_warmup:
|
||||
# Save the step time of every training/inference step, unit is millisecond.
|
||||
duration.append((end - start) * 1000)
|
||||
|
@ -183,11 +181,7 @@ class PytorchLSTM(PytorchBase):
|
|||
self._model(sample)
|
||||
end = self._timer()
|
||||
curr_step += 1
|
||||
if self._args.log_every_steps:
|
||||
if curr_step % self._args.log_every_steps == 0:
|
||||
print(
|
||||
f'{self._name} - {precision.value}: step {curr_step}, step time {(end - start) * 1000}'
|
||||
)
|
||||
self._log_step_time(curr_step, precision, start, end)
|
||||
if curr_step > self._args.num_warmup:
|
||||
# Save the step time of every training/inference step, unit is millisecond.
|
||||
duration.append((end - start) * 1000)
|
||||
|
|
Загрузка…
Ссылка в новой задаче