superbenchmark/examples/benchmarks/pytorch_gpt2_large.py

42 строки
1.5 KiB
Python

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
"""Model benchmark example for gpt2-large (36-layer, 1280-hidden, 20-heads, 774M parameters).
Commands to run:
python3 examples/benchmarks/pytorch_gpt2_large.py (Single GPU)
python3 -m torch.distributed.launch --use_env --nproc_per_node=8 examples/benchmarks/pytorch_gpt2_large.py \
--distributed (Distributed)
"""
import argparse
from superbench.benchmarks import Platform, Framework, BenchmarkRegistry
from superbench.common.utils import logger
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--distributed', action='store_true', default=False, help='Whether to enable distributed training.'
)
args = parser.parse_args()
# Specify the model name and benchmark parameters.
model_name = 'gpt2-large'
parameters = '--batch_size 1 --duration 120 --seq_len 128 --precision float32 --run_count 2'
if args.distributed:
parameters += ' --distributed_impl ddp --distributed_backend nccl'
# Create context for gpt2-large benchmark and run it for 120 * 2 seconds.
context = BenchmarkRegistry.create_benchmark_context(
model_name, platform=Platform.CUDA, parameters=parameters, framework=Framework.PYTORCH
)
benchmark = BenchmarkRegistry.launch_benchmark(context)
if benchmark:
logger.info(
'benchmark: {}, return code: {}, result: {}'.format(
benchmark.name, benchmark.return_code, benchmark.result
)
)