## Summary of the Pull Request

<!-- Please review the items on the PR checklist before submitting-->
## PR Checklist
* [x] Closes #4013 
* [x] I work here.
* [x] Existing tests should be OK. Real changes, just adding a lib to use.
* [x] Couldn't find any existing docs about intsafe.
* [x] Am core contributor.

## Detailed Description of the Pull Request / Additional comments
* [x] Can we remove min/max completely or rename it in the two projects where it had to be reintroduced? This is now moved into #4152 
* [x] How many usages of the old safe math are there? **79**
* [x] If not a ton, can we migrate them here or in a follow on PR? This is now moved into #4153

Files with old safe math:
- TerminalControl: TSFInputControl.cpp
- TerminalCore: TerminalDispatch.cpp
- TerminalCore: TerminalSelection.cpp
- Host: directio.cpp
- RendererGdi: invalidate.cpp
- RendererGdi: math.cpp
- RendererGdi: paint.cpp
- RendererVt: paint.cpp
- TerminalAdapter: adaptDispatch.cpp
- Types: viewport.cpp
- Types: WindowUiaProviderBase.cpp

## Validation Steps Performed
This commit is contained in:
Michael Niksa 2020-01-16 10:51:06 -08:00 коммит произвёл msftbot[bot]
Родитель 6d6fb7f690
Коммит 4d1c7cf3eb
30 изменённых файлов: 3961 добавлений и 2 удалений

Просмотреть файл

@ -77,3 +77,39 @@ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. SOFTWARE.
``` ```
## chromium/base/numerics
**Source**:
### License
```
Copyright 2015 The Chromium Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```

27
dep/chromium/LICENSE Normal file
Просмотреть файл

@ -0,0 +1,27 @@
// Copyright 2015 The Chromium Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Просмотреть файл

@ -0,0 +1,17 @@
### Notes for Future Maintainers
This was originally imported by @miniksa in January 2020.
The provenance information (where it came from and which commit) is stored in the file `cgmanifest.json` in the same directory as this readme.
Please update the provenance information in that file when ingesting an updated version of the dependent library.
That provenance file is automatically read and inventoried by Microsoft systems to ensure compliance with appropiate governance standards.
## What should be done to update this in the future?
1. Go to chromium/chromium repository on GitHub.
2. Take the entire contents of the base/numerics directory wholesale and drop it in the base/numerics directory here.
3. Don't change anything about it.
4. Validate that the license in the root of the repository didn't change and update it if so. It is sitting in the same directory as this readme.
If it changed dramatically, ensure that it is still compatible with our license scheme. Also update the NOTICE file in the root of our repository to declare the third-party usage.
5. Submit the pull.

Просмотреть файл

@ -0,0 +1,28 @@
# Copyright (c) 2017 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
# This is a dependency-free, header-only, library, and it needs to stay that
# way to facilitate pulling it into various third-party projects. So, this
# file is here to protect against accidentally introducing external
# dependencies or depending on internal implementation details.
source_set("base_numerics") {
visibility = [ "//base/*" ]
sources = [
"checked_math_impl.h",
"clamped_math_impl.h",
"safe_conversions_arm_impl.h",
"safe_conversions_impl.h",
"safe_math_arm_impl.h",
"safe_math_clang_gcc_impl.h",
"safe_math_shared_impl.h",
]
public = [
"checked_math.h",
"clamped_math.h",
"math_constants.h",
"ranges.h",
"safe_conversions.h",
"safe_math.h",
]
}

Просмотреть файл

@ -0,0 +1,7 @@
# This is a dependency-free, header-only, library, and it needs to stay that
# way to facilitate pulling it into various third-party projects. So, this
# file is here to protect against accidentally introducing dependencies.
include_rules = [
"-base",
"+base/numerics",
]

Просмотреть файл

@ -0,0 +1,5 @@
jschuh@chromium.org
tsepez@chromium.org
# COMPONENT: Internals

Просмотреть файл

@ -0,0 +1,409 @@
# `base/numerics`
This directory contains a dependency-free, header-only library of templates
providing well-defined semantics for safely and performantly handling a variety
of numeric operations, including most common arithmetic operations and
conversions.
The public API is broken out into the following header files:
* `checked_math.h` contains the `CheckedNumeric` template class and helper
functions for performing arithmetic and conversion operations that detect
errors and boundary conditions (e.g. overflow, truncation, etc.).
* `clamped_math.h` contains the `ClampedNumeric` template class and
helper functions for performing fast, clamped (i.e. [non-sticky](#notsticky)
saturating) arithmetic operations and conversions.
* `safe_conversions.h` contains the `StrictNumeric` template class and
a collection of custom casting templates and helper functions for safely
converting between a range of numeric types.
* `safe_math.h` includes all of the previously mentioned headers.
*** aside
**Note:** The `Numeric` template types implicitly convert from C numeric types
and `Numeric` templates that are convertable to an underlying C numeric type.
The conversion priority for `Numeric` type coercions is:
* `StrictNumeric` coerces to `ClampedNumeric` and `CheckedNumeric`
* `ClampedNumeric` coerces to `CheckedNumeric`
***
[TOC]
## Common patterns and use-cases
The following covers the preferred style for the most common uses of this
library. Please don't cargo-cult from anywhere else. 😉
### Performing checked arithmetic type conversions
The `checked_cast` template converts between arbitrary arithmetic types, and is
used for cases where a conversion failure should result in program termination:
```cpp
// Crash if signed_value is out of range for buff_size.
size_t buff_size = checked_cast<size_t>(signed_value);
```
### Performing saturated (clamped) arithmetic type conversions
The `saturated_cast` template converts between arbitrary arithmetic types, and
is used in cases where an out-of-bounds source value should be saturated to the
corresponding maximum or minimum of the destination type:
```cpp
// Convert from float with saturation to INT_MAX, INT_MIN, or 0 for NaN.
int int_value = saturated_cast<int>(floating_point_value);
```
### Enforcing arithmetic type conversions at compile-time
The `strict_cast` emits code that is identical to `static_cast`. However,
provides static checks that will cause a compilation failure if the
destination type cannot represent the full range of the source type:
```cpp
// Throw a compiler error if byte_value is changed to an out-of-range-type.
int int_value = strict_cast<int>(byte_value);
```
You can also enforce these compile-time restrictions on function parameters by
using the `StrictNumeric` template:
```cpp
// Throw a compiler error if the size argument cannot be represented by a
// size_t (e.g. passing an int will fail to compile).
bool AllocateBuffer(void** buffer, StrictCast<size_t> size);
```
### Comparing values between arbitrary arithmetic types
Both the `StrictNumeric` and `ClampedNumeric` types provide well defined
comparisons between arbitrary arithmetic types. This allows you to perform
comparisons that are not legal or would trigger compiler warnings or errors
under the normal arithmetic promotion rules:
```cpp
bool foo(unsigned value, int upper_bound) {
// Converting to StrictNumeric allows this comparison to work correctly.
if (MakeStrictNum(value) >= upper_bound)
return false;
```
*** note
**Warning:** Do not perform manual conversions using the comparison operators.
Instead, use the cast templates described in the previous sections, or the
constexpr template functions `IsValueInRangeForNumericType` and
`IsTypeInRangeForNumericType`, as these templates properly handle the full range
of corner cases and employ various optimizations.
***
### Calculating a buffer size (checked arithmetic)
When making exact calculations—such as for buffer lengths—it's often necessary
to know when those calculations trigger an overflow, undefined behavior, or
other boundary conditions. The `CheckedNumeric` template does this by storing
a bit determining whether or not some arithmetic operation has occured that
would put the variable in an "invalid" state. Attempting to extract the value
from a variable in an invalid state will trigger a check/trap condition, that
by default will result in process termination.
Here's an example of a buffer calculation using a `CheckedNumeric` type (note:
the AssignIfValid method will trigger a compile error if the result is ignored).
```cpp
// Calculate the buffer size and detect if an overflow occurs.
size_t size;
if (!CheckAdd(kHeaderSize, CheckMul(count, kItemSize)).AssignIfValid(&size)) {
// Handle an overflow error...
}
```
### Calculating clamped coordinates (non-sticky saturating arithmetic)
Certain classes of calculations—such as coordinate calculations—require
well-defined semantics that always produce a valid result on boundary
conditions. The `ClampedNumeric` template addresses this by providing
performant, non-sticky saturating arithmetic operations.
Here's an example of using a `ClampedNumeric` to calculate an operation
insetting a rectangle.
```cpp
// Use clamped arithmetic since inset calculations might overflow.
void Rect::Inset(int left, int top, int right, int bottom) {
origin_ += Vector2d(left, top);
set_width(ClampSub(width(), ClampAdd(left, right)));
set_height(ClampSub(height(), ClampAdd(top, bottom)));
}
```
*** note
<a name="notsticky"></a>
The `ClampedNumeric` type is not "sticky", which means the saturation is not
retained across individual operations. As such, one arithmetic operation may
result in a saturated value, while the next operation may then "desaturate"
the value. Here's an example:
```cpp
ClampedNumeric<int> value = INT_MAX;
++value; // value is still INT_MAX, due to saturation.
--value; // value is now (INT_MAX - 1), because saturation is not sticky.
```
***
## Conversion functions and StrictNumeric<> in safe_conversions.h
This header includes a collection of helper `constexpr` templates for safely
performing a range of conversions, assignments, and tests.
### Safe casting templates
* `as_signed()` - Returns the supplied integral value as a signed type of
the same width.
* `as_unsigned()` - Returns the supplied integral value as an unsigned type
of the same width.
* `checked_cast<>()` - Analogous to `static_cast<>` for numeric types, except
that by default it will trigger a crash on an out-of-bounds conversion (e.g.
overflow, underflow, NaN to integral) or a compile error if the conversion
error can be detected at compile time. The crash handler can be overridden
to perform a behavior other than crashing.
* `saturated_cast<>()` - Analogous to `static_cast` for numeric types, except
that it returns a saturated result when the specified numeric conversion
would otherwise overflow or underflow. An NaN source returns 0 by
default, but can be overridden to return a different result.
* `strict_cast<>()` - Analogous to `static_cast` for numeric types, except
this causes a compile failure if the destination type is not large
enough to contain any value in the source type. It performs no runtime
checking and thus introduces no runtime overhead.
### Other helper and conversion functions
* `IsValueInRangeForNumericType<>()` - A convenience function that returns
true if the type supplied as the template parameter can represent the value
passed as an argument to the function.
* `IsTypeInRangeForNumericType<>()` - A convenience function that evaluates
entirely at compile-time and returns true if the destination type (first
template parameter) can represent the full range of the source type
(second template parameter).
* `IsValueNegative()` - A convenience function that will accept any
arithmetic type as an argument and will return whether the value is less
than zero. Unsigned types always return false.
* `SafeUnsignedAbs()` - Returns the absolute value of the supplied integer
parameter as an unsigned result (thus avoiding an overflow if the value
is the signed, two's complement minimum).
### StrictNumeric<>
`StrictNumeric<>` is a wrapper type that performs assignments and copies via
the `strict_cast` template, and can perform valid arithmetic comparisons
across any range of arithmetic types. `StrictNumeric` is the return type for
values extracted from a `CheckedNumeric` class instance. The raw numeric value
is extracted via `static_cast` to the underlying type or any type with
sufficient range to represent the underlying type.
* `MakeStrictNum()` - Creates a new `StrictNumeric` from the underlying type
of the supplied arithmetic or StrictNumeric type.
* `SizeT` - Alias for `StrictNumeric<size_t>`.
## CheckedNumeric<> in checked_math.h
`CheckedNumeric<>` implements all the logic and operators for detecting integer
boundary conditions such as overflow, underflow, and invalid conversions.
The `CheckedNumeric` type implicitly converts from floating point and integer
data types, and contains overloads for basic arithmetic operations (i.e.: `+`,
`-`, `*`, `/` for all types and `%`, `<<`, `>>`, `&`, `|`, `^` for integers).
However, *the [variadic template functions
](#CheckedNumeric_in-checked_math_h-Non_member-helper-functions)
are the prefered API,* as they remove type ambiguities and help prevent a number
of common errors. The variadic functions can also be more performant, as they
eliminate redundant expressions that are unavoidable with the with the operator
overloads. (Ideally the compiler should optimize those away, but better to avoid
them in the first place.)
Type promotions are a slightly modified version of the [standard C/C++ numeric
promotions
](http://en.cppreference.com/w/cpp/language/implicit_conversion#Numeric_promotions)
with the two differences being that *there is no default promotion to int*
and *bitwise logical operations always return an unsigned of the wider type.*
### Members
The unary negation, increment, and decrement operators are supported, along
with the following unary arithmetic methods, which return a new
`CheckedNumeric` as a result of the operation:
* `Abs()` - Absolute value.
* `UnsignedAbs()` - Absolute value as an equal-width unsigned underlying type
(valid for only integral types).
* `Max()` - Returns whichever is greater of the current instance or argument.
The underlying return type is whichever has the greatest magnitude.
* `Min()` - Returns whichever is lowest of the current instance or argument.
The underlying return type is whichever has can represent the lowest
number in the smallest width (e.g. int8_t over unsigned, int over
int8_t, and float over int).
The following are for converting `CheckedNumeric` instances:
* `type` - The underlying numeric type.
* `AssignIfValid()` - Assigns the underlying value to the supplied
destination pointer if the value is currently valid and within the
range supported by the destination type. Returns true on success.
* `Cast<>()` - Instance method returning a `CheckedNumeric` derived from
casting the current instance to a `CheckedNumeric` of the supplied
destination type.
*** aside
The following member functions return a `StrictNumeric`, which is valid for
comparison and assignment operations, but will trigger a compile failure on
attempts to assign to a type of insufficient range. The underlying value can
be extracted by an explicit `static_cast` to the underlying type or any type
with sufficient range to represent the underlying type.
***
* `IsValid()` - Returns true if the underlying numeric value is valid (i.e.
has not wrapped or saturated and is not the result of an invalid
conversion).
* `ValueOrDie()` - Returns the underlying value. If the state is not valid
this call will trigger a crash by default (but may be overridden by
supplying an alternate handler to the template).
* `ValueOrDefault()` - Returns the current value, or the supplied default if
the state is not valid (but will not crash).
**Comparison operators are explicitly not provided** for `CheckedNumeric`
types because they could result in a crash if the type is not in a valid state.
Patterns like the following should be used instead:
```cpp
// Either input or padding (or both) may be arbitrary sizes.
size_t buff_size;
if (!CheckAdd(input, padding, kHeaderLength).AssignIfValid(&buff_size) ||
buff_size >= kMaxBuffer) {
// Handle an error...
} else {
// Do stuff on success...
}
```
### Non-member helper functions
The following variadic convenience functions, which accept standard arithmetic
or `CheckedNumeric` types, perform arithmetic operations, and return a
`CheckedNumeric` result. The supported functions are:
* `CheckAdd()` - Addition.
* `CheckSub()` - Subtraction.
* `CheckMul()` - Multiplication.
* `CheckDiv()` - Division.
* `CheckMod()` - Modulus (integer only).
* `CheckLsh()` - Left integer shift (integer only).
* `CheckRsh()` - Right integer shift (integer only).
* `CheckAnd()` - Bitwise AND (integer only with unsigned result).
* `CheckOr()` - Bitwise OR (integer only with unsigned result).
* `CheckXor()` - Bitwise XOR (integer only with unsigned result).
* `CheckMax()` - Maximum of supplied arguments.
* `CheckMin()` - Minimum of supplied arguments.
The following wrapper functions can be used to avoid the template
disambiguator syntax when converting a destination type.
* `IsValidForType<>()` in place of: `a.template IsValid<>()`
* `ValueOrDieForType<>()` in place of: `a.template ValueOrDie<>()`
* `ValueOrDefaultForType<>()` in place of: `a.template ValueOrDefault<>()`
The following general utility methods is are useful for converting from
arithmetic types to `CheckedNumeric` types:
* `MakeCheckedNum()` - Creates a new `CheckedNumeric` from the underlying type
of the supplied arithmetic or directly convertible type.
## ClampedNumeric<> in clamped_math.h
`ClampedNumeric<>` implements all the logic and operators for clamped
(non-sticky saturating) arithmetic operations and conversions. The
`ClampedNumeric` type implicitly converts back and forth between floating point
and integer data types, saturating on assignment as appropriate. It contains
overloads for basic arithmetic operations (i.e.: `+`, `-`, `*`, `/` for
all types and `%`, `<<`, `>>`, `&`, `|`, `^` for integers) along with comparison
operators for arithmetic types of any size. However, *the [variadic template
functions
](#ClampedNumeric_in-clamped_math_h-Non_member-helper-functions)
are the prefered API,* as they remove type ambiguities and help prevent
a number of common errors. The variadic functions can also be more performant,
as they eliminate redundant expressions that are unavoidable with the operator
overloads. (Ideally the compiler should optimize those away, but better to avoid
them in the first place.)
Type promotions are a slightly modified version of the [standard C/C++ numeric
promotions
](http://en.cppreference.com/w/cpp/language/implicit_conversion#Numeric_promotions)
with the two differences being that *there is no default promotion to int*
and *bitwise logical operations always return an unsigned of the wider type.*
*** aside
Most arithmetic operations saturate normally, to the numeric limit in the
direction of the sign. The potentially unusual cases are:
* **Division:** Division by zero returns the saturated limit in the direction
of sign of the dividend (first argument). The one exception is 0/0, which
returns zero (although logically is NaN).
* **Modulus:** Division by zero returns the dividend (first argument).
* **Left shift:** Non-zero values saturate in the direction of the signed
limit (max/min), even for shifts larger than the bit width. 0 shifted any
amount results in 0.
* **Right shift:** Negative values saturate to -1. Positive or 0 saturates
to 0. (Effectively just an unbounded arithmetic-right-shift.)
* **Bitwise operations:** No saturation; bit pattern is identical to
non-saturated bitwise operations.
***
### Members
The unary negation, increment, and decrement operators are supported, along
with the following unary arithmetic methods, which return a new
`ClampedNumeric` as a result of the operation:
* `Abs()` - Absolute value.
* `UnsignedAbs()` - Absolute value as an equal-width unsigned underlying type
(valid for only integral types).
* `Max()` - Returns whichever is greater of the current instance or argument.
The underlying return type is whichever has the greatest magnitude.
* `Min()` - Returns whichever is lowest of the current instance or argument.
The underlying return type is whichever has can represent the lowest
number in the smallest width (e.g. int8_t over unsigned, int over
int8_t, and float over int).
The following are for converting `ClampedNumeric` instances:
* `type` - The underlying numeric type.
* `RawValue()` - Returns the raw value as the underlying arithmetic type. This
is useful when e.g. assigning to an auto type or passing as a deduced
template parameter.
* `Cast<>()` - Instance method returning a `ClampedNumeric` derived from
casting the current instance to a `ClampedNumeric` of the supplied
destination type.
### Non-member helper functions
The following variadic convenience functions, which accept standard arithmetic
or `ClampedNumeric` types, perform arithmetic operations, and return a
`ClampedNumeric` result. The supported functions are:
* `ClampAdd()` - Addition.
* `ClampSub()` - Subtraction.
* `ClampMul()` - Multiplication.
* `ClampDiv()` - Division.
* `ClampMod()` - Modulus (integer only).
* `ClampLsh()` - Left integer shift (integer only).
* `ClampRsh()` - Right integer shift (integer only).
* `ClampAnd()` - Bitwise AND (integer only with unsigned result).
* `ClampOr()` - Bitwise OR (integer only with unsigned result).
* `ClampXor()` - Bitwise XOR (integer only with unsigned result).
* `ClampMax()` - Maximum of supplied arguments.
* `ClampMin()` - Minimum of supplied arguments.
The following is a general utility method that is useful for converting
to a `ClampedNumeric` type:
* `MakeClampedNum()` - Creates a new `ClampedNumeric` from the underlying type
of the supplied arithmetic or directly convertible type.

Просмотреть файл

@ -0,0 +1,393 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CHECKED_MATH_H_
#define BASE_NUMERICS_CHECKED_MATH_H_
#include <stddef.h>
#include <limits>
#include <type_traits>
#include "base/numerics/checked_math_impl.h"
namespace base {
namespace internal {
template <typename T>
class CheckedNumeric {
static_assert(std::is_arithmetic<T>::value,
"CheckedNumeric<T>: T must be a numeric type.");
public:
using type = T;
constexpr CheckedNumeric() = default;
// Copy constructor.
template <typename Src>
constexpr CheckedNumeric(const CheckedNumeric<Src>& rhs)
: state_(rhs.state_.value(), rhs.IsValid()) {}
template <typename Src>
friend class CheckedNumeric;
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to CheckedNumerics to make them easier to use.
template <typename Src>
constexpr CheckedNumeric(Src value) // NOLINT(runtime/explicit)
: state_(value) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
}
// This is not an explicit constructor because we want a seamless conversion
// from StrictNumeric types.
template <typename Src>
constexpr CheckedNumeric(
StrictNumeric<Src> value) // NOLINT(runtime/explicit)
: state_(static_cast<Src>(value)) {}
// IsValid() - The public API to test if a CheckedNumeric is currently valid.
// A range checked destination type can be supplied using the Dst template
// parameter.
template <typename Dst = T>
constexpr bool IsValid() const {
return state_.is_valid() &&
IsValueInRangeForNumericType<Dst>(state_.value());
}
// AssignIfValid(Dst) - Assigns the underlying value if it is currently valid
// and is within the range supported by the destination type. Returns true if
// successful and false otherwise.
template <typename Dst>
#if defined(__clang__) || defined(__GNUC__)
__attribute__((warn_unused_result))
#elif defined(_MSC_VER)
_Check_return_
#endif
constexpr bool
AssignIfValid(Dst* result) const {
return BASE_NUMERICS_LIKELY(IsValid<Dst>())
? ((*result = static_cast<Dst>(state_.value())), true)
: false;
}
// ValueOrDie() - The primary accessor for the underlying value. If the
// current state is not valid it will CHECK and crash.
// A range checked destination type can be supplied using the Dst template
// parameter, which will trigger a CHECK if the value is not in bounds for
// the destination.
// The CHECK behavior can be overridden by supplying a handler as a
// template parameter, for test code, etc. However, the handler cannot access
// the underlying value, and it is not available through other means.
template <typename Dst = T, class CheckHandler = CheckOnFailure>
constexpr StrictNumeric<Dst> ValueOrDie() const {
return BASE_NUMERICS_LIKELY(IsValid<Dst>())
? static_cast<Dst>(state_.value())
: CheckHandler::template HandleFailure<Dst>();
}
// ValueOrDefault(T default_value) - A convenience method that returns the
// current value if the state is valid, and the supplied default_value for
// any other state.
// A range checked destination type can be supplied using the Dst template
// parameter. WARNING: This function may fail to compile or CHECK at runtime
// if the supplied default_value is not within range of the destination type.
template <typename Dst = T, typename Src>
constexpr StrictNumeric<Dst> ValueOrDefault(const Src default_value) const {
return BASE_NUMERICS_LIKELY(IsValid<Dst>())
? static_cast<Dst>(state_.value())
: checked_cast<Dst>(default_value);
}
// Returns a checked numeric of the specified type, cast from the current
// CheckedNumeric. If the current state is invalid or the destination cannot
// represent the result then the returned CheckedNumeric will be invalid.
template <typename Dst>
constexpr CheckedNumeric<typename UnderlyingType<Dst>::type> Cast() const {
return *this;
}
// This friend method is available solely for providing more detailed logging
// in the the tests. Do not implement it in production code, because the
// underlying values may change at any time.
template <typename U>
friend U GetNumericValueForTest(const CheckedNumeric<U>& src);
// Prototypes for the supported arithmetic operator overloads.
template <typename Src>
constexpr CheckedNumeric& operator+=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator-=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator*=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator/=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator%=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator<<=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator>>=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator&=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator|=(const Src rhs);
template <typename Src>
constexpr CheckedNumeric& operator^=(const Src rhs);
constexpr CheckedNumeric operator-() const {
// The negation of two's complement int min is int min, so we simply
// check for that in the constexpr case.
// We use an optimized code path for a known run-time variable.
return MustTreatAsConstexpr(state_.value()) || !std::is_signed<T>::value ||
std::is_floating_point<T>::value
? CheckedNumeric<T>(
NegateWrapper(state_.value()),
IsValid() && (!std::is_signed<T>::value ||
std::is_floating_point<T>::value ||
NegateWrapper(state_.value()) !=
std::numeric_limits<T>::lowest()))
: FastRuntimeNegate();
}
constexpr CheckedNumeric operator~() const {
return CheckedNumeric<decltype(InvertWrapper(T()))>(
InvertWrapper(state_.value()), IsValid());
}
constexpr CheckedNumeric Abs() const {
return !IsValueNegative(state_.value()) ? *this : -*this;
}
template <typename U>
constexpr CheckedNumeric<typename MathWrapper<CheckedMaxOp, T, U>::type> Max(
const U rhs) const {
using R = typename UnderlyingType<U>::type;
using result_type = typename MathWrapper<CheckedMaxOp, T, U>::type;
// TODO(jschuh): This can be converted to the MathOp version and remain
// constexpr once we have C++14 support.
return CheckedNumeric<result_type>(
static_cast<result_type>(
IsGreater<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
? state_.value()
: Wrapper<U>::value(rhs)),
state_.is_valid() && Wrapper<U>::is_valid(rhs));
}
template <typename U>
constexpr CheckedNumeric<typename MathWrapper<CheckedMinOp, T, U>::type> Min(
const U rhs) const {
using R = typename UnderlyingType<U>::type;
using result_type = typename MathWrapper<CheckedMinOp, T, U>::type;
// TODO(jschuh): This can be converted to the MathOp version and remain
// constexpr once we have C++14 support.
return CheckedNumeric<result_type>(
static_cast<result_type>(
IsLess<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
? state_.value()
: Wrapper<U>::value(rhs)),
state_.is_valid() && Wrapper<U>::is_valid(rhs));
}
// This function is available only for integral types. It returns an unsigned
// integer of the same width as the source type, containing the absolute value
// of the source, and properly handling signed min.
constexpr CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>
UnsignedAbs() const {
return CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>(
SafeUnsignedAbs(state_.value()), state_.is_valid());
}
constexpr CheckedNumeric& operator++() {
*this += 1;
return *this;
}
constexpr CheckedNumeric operator++(int) {
CheckedNumeric value = *this;
*this += 1;
return value;
}
constexpr CheckedNumeric& operator--() {
*this -= 1;
return *this;
}
constexpr CheckedNumeric operator--(int) {
CheckedNumeric value = *this;
*this -= 1;
return value;
}
// These perform the actual math operations on the CheckedNumerics.
// Binary arithmetic operations.
template <template <typename, typename, typename> class M,
typename L,
typename R>
static constexpr CheckedNumeric MathOp(const L lhs, const R rhs) {
using Math = typename MathWrapper<M, L, R>::math;
T result = 0;
bool is_valid =
Wrapper<L>::is_valid(lhs) && Wrapper<R>::is_valid(rhs) &&
Math::Do(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs), &result);
return CheckedNumeric<T>(result, is_valid);
}
// Assignment arithmetic operations.
template <template <typename, typename, typename> class M, typename R>
constexpr CheckedNumeric& MathOp(const R rhs) {
using Math = typename MathWrapper<M, T, R>::math;
T result = 0; // Using T as the destination saves a range check.
bool is_valid = state_.is_valid() && Wrapper<R>::is_valid(rhs) &&
Math::Do(state_.value(), Wrapper<R>::value(rhs), &result);
*this = CheckedNumeric<T>(result, is_valid);
return *this;
}
private:
CheckedNumericState<T> state_;
CheckedNumeric FastRuntimeNegate() const {
T result;
bool success = CheckedSubOp<T, T>::Do(T(0), state_.value(), &result);
return CheckedNumeric<T>(result, IsValid() && success);
}
template <typename Src>
constexpr CheckedNumeric(Src value, bool is_valid)
: state_(value, is_valid) {}
// These wrappers allow us to handle state the same way for both
// CheckedNumeric and POD arithmetic types.
template <typename Src>
struct Wrapper {
static constexpr bool is_valid(Src) { return true; }
static constexpr Src value(Src value) { return value; }
};
template <typename Src>
struct Wrapper<CheckedNumeric<Src>> {
static constexpr bool is_valid(const CheckedNumeric<Src> v) {
return v.IsValid();
}
static constexpr Src value(const CheckedNumeric<Src> v) {
return v.state_.value();
}
};
template <typename Src>
struct Wrapper<StrictNumeric<Src>> {
static constexpr bool is_valid(const StrictNumeric<Src>) { return true; }
static constexpr Src value(const StrictNumeric<Src> v) {
return static_cast<Src>(v);
}
};
};
// Convenience functions to avoid the ugly template disambiguator syntax.
template <typename Dst, typename Src>
constexpr bool IsValidForType(const CheckedNumeric<Src> value) {
return value.template IsValid<Dst>();
}
template <typename Dst, typename Src>
constexpr StrictNumeric<Dst> ValueOrDieForType(
const CheckedNumeric<Src> value) {
return value.template ValueOrDie<Dst>();
}
template <typename Dst, typename Src, typename Default>
constexpr StrictNumeric<Dst> ValueOrDefaultForType(
const CheckedNumeric<Src> value,
const Default default_value) {
return value.template ValueOrDefault<Dst>(default_value);
}
// Convience wrapper to return a new CheckedNumeric from the provided arithmetic
// or CheckedNumericType.
template <typename T>
constexpr CheckedNumeric<typename UnderlyingType<T>::type> MakeCheckedNum(
const T value) {
return value;
}
// These implement the variadic wrapper for the math operations.
template <template <typename, typename, typename> class M,
typename L,
typename R>
constexpr CheckedNumeric<typename MathWrapper<M, L, R>::type> CheckMathOp(
const L lhs,
const R rhs) {
using Math = typename MathWrapper<M, L, R>::math;
return CheckedNumeric<typename Math::result_type>::template MathOp<M>(lhs,
rhs);
}
// General purpose wrapper template for arithmetic operations.
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
constexpr CheckedNumeric<typename ResultType<M, L, R, Args...>::type>
CheckMathOp(const L lhs, const R rhs, const Args... args) {
return CheckMathOp<M>(CheckMathOp<M>(lhs, rhs), args...);
}
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Add, +, +=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Sub, -, -=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Mul, *, *=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Div, /, /=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Mod, %, %=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Lsh, <<, <<=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Rsh, >>, >>=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, And, &, &=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Or, |, |=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Xor, ^, ^=)
BASE_NUMERIC_ARITHMETIC_VARIADIC(Checked, Check, Max)
BASE_NUMERIC_ARITHMETIC_VARIADIC(Checked, Check, Min)
// These are some extra StrictNumeric operators to support simple pointer
// arithmetic with our result types. Since wrapping on a pointer is always
// bad, we trigger the CHECK condition here.
template <typename L, typename R>
L* operator+(L* lhs, const StrictNumeric<R> rhs) {
uintptr_t result = CheckAdd(reinterpret_cast<uintptr_t>(lhs),
CheckMul(sizeof(L), static_cast<R>(rhs)))
.template ValueOrDie<uintptr_t>();
return reinterpret_cast<L*>(result);
}
template <typename L, typename R>
L* operator-(L* lhs, const StrictNumeric<R> rhs) {
uintptr_t result = CheckSub(reinterpret_cast<uintptr_t>(lhs),
CheckMul(sizeof(L), static_cast<R>(rhs)))
.template ValueOrDie<uintptr_t>();
return reinterpret_cast<L*>(result);
}
} // namespace internal
using internal::CheckedNumeric;
using internal::IsValidForType;
using internal::ValueOrDieForType;
using internal::ValueOrDefaultForType;
using internal::MakeCheckedNum;
using internal::CheckMax;
using internal::CheckMin;
using internal::CheckAdd;
using internal::CheckSub;
using internal::CheckMul;
using internal::CheckDiv;
using internal::CheckMod;
using internal::CheckLsh;
using internal::CheckRsh;
using internal::CheckAnd;
using internal::CheckOr;
using internal::CheckXor;
} // namespace base
#endif // BASE_NUMERICS_CHECKED_MATH_H_

Просмотреть файл

@ -0,0 +1,567 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CHECKED_MATH_IMPL_H_
#define BASE_NUMERICS_CHECKED_MATH_IMPL_H_
#include <stddef.h>
#include <stdint.h>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math_shared_impl.h"
namespace base {
namespace internal {
template <typename T>
constexpr bool CheckedAddImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
UnsignedDst ux = static_cast<UnsignedDst>(x);
UnsignedDst uy = static_cast<UnsignedDst>(y);
UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy);
*result = static_cast<T>(uresult);
// Addition is valid if the sign of (x + y) is equal to either that of x or
// that of y.
return (std::is_signed<T>::value)
? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0
: uresult >= uy; // Unsigned is either valid or underflow.
}
template <typename T, typename U, class Enable = void>
struct CheckedAddOp {};
template <typename T, typename U>
struct CheckedAddOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
// TODO(jschuh) Make this "constexpr if" once we're C++17.
if (CheckedAddFastOp<T, U>::is_supported)
return CheckedAddFastOp<T, U>::Do(x, y, result);
// Double the underlying type up to a full machine word.
using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type;
using Promotion =
typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value >
IntegerBitsPlusSign<intptr_t>::value),
typename BigEnoughPromotion<T, U>::type,
FastPromotion>::type;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y))) {
return false;
}
Promotion presult = {};
bool is_valid = true;
if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
} else {
is_valid = CheckedAddImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
}
};
template <typename T>
constexpr bool CheckedSubImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
UnsignedDst ux = static_cast<UnsignedDst>(x);
UnsignedDst uy = static_cast<UnsignedDst>(y);
UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy);
*result = static_cast<T>(uresult);
// Subtraction is valid if either x and y have same sign, or (x-y) and x have
// the same sign.
return (std::is_signed<T>::value)
? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0
: x >= y;
}
template <typename T, typename U, class Enable = void>
struct CheckedSubOp {};
template <typename T, typename U>
struct CheckedSubOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
// TODO(jschuh) Make this "constexpr if" once we're C++17.
if (CheckedSubFastOp<T, U>::is_supported)
return CheckedSubFastOp<T, U>::Do(x, y, result);
// Double the underlying type up to a full machine word.
using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type;
using Promotion =
typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value >
IntegerBitsPlusSign<intptr_t>::value),
typename BigEnoughPromotion<T, U>::type,
FastPromotion>::type;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y))) {
return false;
}
Promotion presult = {};
bool is_valid = true;
if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
} else {
is_valid = CheckedSubImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
}
};
template <typename T>
constexpr bool CheckedMulImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
// Since the value of x*y is potentially undefined if we have a signed type,
// we compute it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
const UnsignedDst ux = SafeUnsignedAbs(x);
const UnsignedDst uy = SafeUnsignedAbs(y);
UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy);
const bool is_negative =
std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0;
*result = is_negative ? 0 - uresult : uresult;
// We have a fast out for unsigned identity or zero on the second operand.
// After that it's an unsigned overflow check on the absolute value, with
// a +1 bound for a negative result.
return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) ||
ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy;
}
template <typename T, typename U, class Enable = void>
struct CheckedMulOp {};
template <typename T, typename U>
struct CheckedMulOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
// TODO(jschuh) Make this "constexpr if" once we're C++17.
if (CheckedMulFastOp<T, U>::is_supported)
return CheckedMulFastOp<T, U>::Do(x, y, result);
using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
// Verify the destination type can hold the result (always true for 0).
if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) &&
x && y)) {
return false;
}
Promotion presult = {};
bool is_valid = true;
if (CheckedMulFastOp<Promotion, Promotion>::is_supported) {
// The fast op may be available with the promoted type.
is_valid = CheckedMulFastOp<Promotion, Promotion>::Do(x, y, &presult);
} else if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
} else {
is_valid = CheckedMulImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
}
};
// Division just requires a check for a zero denominator or an invalid negation
// on signed min/-1.
template <typename T, typename U, class Enable = void>
struct CheckedDivOp {};
template <typename T, typename U>
struct CheckedDivOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if (BASE_NUMERICS_UNLIKELY(!y))
return false;
// The overflow check can be compiled away if we don't have the exact
// combination of types needed to trigger this case.
using Promotion = typename BigEnoughPromotion<T, U>::type;
if (BASE_NUMERICS_UNLIKELY(
(std::is_signed<T>::value && std::is_signed<U>::value &&
IsTypeInRangeForNumericType<T, Promotion>::value &&
static_cast<Promotion>(x) ==
std::numeric_limits<Promotion>::lowest() &&
y == static_cast<U>(-1)))) {
return false;
}
// This branch always compiles away if the above branch wasn't removed.
if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) &&
x)) {
return false;
}
Promotion presult = Promotion(x) / Promotion(y);
*result = static_cast<V>(presult);
return IsValueInRangeForNumericType<V>(presult);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedModOp {};
template <typename T, typename U>
struct CheckedModOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
using Promotion = typename BigEnoughPromotion<T, U>::type;
if (BASE_NUMERICS_LIKELY(y)) {
Promotion presult = static_cast<Promotion>(x) % static_cast<Promotion>(y);
*result = static_cast<Promotion>(presult);
return IsValueInRangeForNumericType<V>(presult);
}
return false;
}
};
template <typename T, typename U, class Enable = void>
struct CheckedLshOp {};
// Left shift. Shifts less than 0 or greater than or equal to the number
// of bits in the promoted type are undefined. Shifts of negative values
// are undefined. Otherwise it is defined when the result fits.
template <typename T, typename U>
struct CheckedLshOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = T;
template <typename V>
static constexpr bool Do(T x, U shift, V* result) {
// Disallow negative numbers and verify the shift is in bounds.
if (BASE_NUMERICS_LIKELY(!IsValueNegative(x) &&
as_unsigned(shift) <
as_unsigned(std::numeric_limits<T>::digits))) {
// Shift as unsigned to avoid undefined behavior.
*result = static_cast<V>(as_unsigned(x) << shift);
// If the shift can be reversed, we know it was valid.
return *result >> shift == x;
}
// Handle the legal corner-case of a full-width signed shift of zero.
return std::is_signed<T>::value && !x &&
as_unsigned(shift) == as_unsigned(std::numeric_limits<T>::digits);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedRshOp {};
// Right shift. Shifts less than 0 or greater than or equal to the number
// of bits in the promoted type are undefined. Otherwise, it is always defined,
// but a right shift of a negative value is implementation-dependent.
template <typename T, typename U>
struct CheckedRshOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = T;
template <typename V>
static bool Do(T x, U shift, V* result) {
// Use the type conversion push negative values out of range.
if (BASE_NUMERICS_LIKELY(as_unsigned(shift) <
IntegerBitsPlusSign<T>::value)) {
T tmp = x >> shift;
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
return false;
}
};
template <typename T, typename U, class Enable = void>
struct CheckedAndOp {};
// For simplicity we support only unsigned integer results.
template <typename T, typename U>
struct CheckedAndOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedOrOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
struct CheckedOrOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedXorOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
struct CheckedXorOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
// Max doesn't really need to be implemented this way because it can't fail,
// but it makes the code much cleaner to use the MathOp wrappers.
template <typename T, typename U, class Enable = void>
struct CheckedMaxOp {};
template <typename T, typename U>
struct CheckedMaxOp<
T,
U,
typename std::enable_if<std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
result_type tmp = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x)
: static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
// Min doesn't really need to be implemented this way because it can't fail,
// but it makes the code much cleaner to use the MathOp wrappers.
template <typename T, typename U, class Enable = void>
struct CheckedMinOp {};
template <typename T, typename U>
struct CheckedMinOp<
T,
U,
typename std::enable_if<std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value>::type> {
using result_type = typename LowestValuePromotion<T, U>::type;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
result_type tmp = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x)
: static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
// This is just boilerplate that wraps the standard floating point arithmetic.
// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
template <typename T, typename U> \
struct Checked##NAME##Op< \
T, U, \
typename std::enable_if<std::is_floating_point<T>::value || \
std::is_floating_point<U>::value>::type> { \
using result_type = typename MaxExponentPromotion<T, U>::type; \
template <typename V> \
static constexpr bool Do(T x, U y, V* result) { \
using Promotion = typename MaxExponentPromotion<T, U>::type; \
Promotion presult = x OP y; \
*result = static_cast<V>(presult); \
return IsValueInRangeForNumericType<V>(presult); \
} \
};
BASE_FLOAT_ARITHMETIC_OPS(Add, +)
BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
BASE_FLOAT_ARITHMETIC_OPS(Div, /)
#undef BASE_FLOAT_ARITHMETIC_OPS
// Floats carry around their validity state with them, but integers do not. So,
// we wrap the underlying value in a specialization in order to hide that detail
// and expose an interface via accessors.
enum NumericRepresentation {
NUMERIC_INTEGER,
NUMERIC_FLOATING,
NUMERIC_UNKNOWN
};
template <typename NumericType>
struct GetNumericRepresentation {
static const NumericRepresentation value =
std::is_integral<NumericType>::value
? NUMERIC_INTEGER
: (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING
: NUMERIC_UNKNOWN);
};
template <typename T,
NumericRepresentation type = GetNumericRepresentation<T>::value>
class CheckedNumericState {};
// Integrals require quite a bit of additional housekeeping to manage state.
template <typename T>
class CheckedNumericState<T, NUMERIC_INTEGER> {
private:
// is_valid_ precedes value_ because member intializers in the constructors
// are evaluated in field order, and is_valid_ must be read when initializing
// value_.
bool is_valid_;
T value_;
// Ensures that a type conversion does not trigger undefined behavior.
template <typename Src>
static constexpr T WellDefinedConversionOrZero(const Src value,
const bool is_valid) {
using SrcType = typename internal::UnderlyingType<Src>::type;
return (std::is_integral<SrcType>::value || is_valid)
? static_cast<T>(value)
: static_cast<T>(0);
}
public:
template <typename Src, NumericRepresentation type>
friend class CheckedNumericState;
constexpr CheckedNumericState() : is_valid_(true), value_(0) {}
template <typename Src>
constexpr CheckedNumericState(Src value, bool is_valid)
: is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
value_(WellDefinedConversionOrZero(value, is_valid_)) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
}
// Copy constructor.
template <typename Src>
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
: is_valid_(rhs.IsValid()),
value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {}
template <typename Src>
constexpr explicit CheckedNumericState(Src value)
: is_valid_(IsValueInRangeForNumericType<T>(value)),
value_(WellDefinedConversionOrZero(value, is_valid_)) {}
constexpr bool is_valid() const { return is_valid_; }
constexpr T value() const { return value_; }
};
// Floating points maintain their own validity, but need translation wrappers.
template <typename T>
class CheckedNumericState<T, NUMERIC_FLOATING> {
private:
T value_;
// Ensures that a type conversion does not trigger undefined behavior.
template <typename Src>
static constexpr T WellDefinedConversionOrNaN(const Src value,
const bool is_valid) {
using SrcType = typename internal::UnderlyingType<Src>::type;
return (StaticDstRangeRelationToSrcRange<T, SrcType>::value ==
NUMERIC_RANGE_CONTAINED ||
is_valid)
? static_cast<T>(value)
: std::numeric_limits<T>::quiet_NaN();
}
public:
template <typename Src, NumericRepresentation type>
friend class CheckedNumericState;
constexpr CheckedNumericState() : value_(0.0) {}
template <typename Src>
constexpr CheckedNumericState(Src value, bool is_valid)
: value_(WellDefinedConversionOrNaN(value, is_valid)) {}
template <typename Src>
constexpr explicit CheckedNumericState(Src value)
: value_(WellDefinedConversionOrNaN(
value,
IsValueInRangeForNumericType<T>(value))) {}
// Copy constructor.
template <typename Src>
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
: value_(WellDefinedConversionOrNaN(
rhs.value(),
rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {}
constexpr bool is_valid() const {
// Written this way because std::isfinite is not reliably constexpr.
return MustTreatAsConstexpr(value_)
? value_ <= std::numeric_limits<T>::max() &&
value_ >= std::numeric_limits<T>::lowest()
: std::isfinite(value_);
}
constexpr T value() const { return value_; }
};
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_CHECKED_MATH_IMPL_H_

Просмотреть файл

@ -0,0 +1,264 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CLAMPED_MATH_H_
#define BASE_NUMERICS_CLAMPED_MATH_H_
#include <stddef.h>
#include <limits>
#include <type_traits>
#include "base/numerics/clamped_math_impl.h"
namespace base {
namespace internal {
template <typename T>
class ClampedNumeric {
static_assert(std::is_arithmetic<T>::value,
"ClampedNumeric<T>: T must be a numeric type.");
public:
using type = T;
constexpr ClampedNumeric() : value_(0) {}
// Copy constructor.
template <typename Src>
constexpr ClampedNumeric(const ClampedNumeric<Src>& rhs)
: value_(saturated_cast<T>(rhs.value_)) {}
template <typename Src>
friend class ClampedNumeric;
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to ClampedNumerics to make them easier to use.
template <typename Src>
constexpr ClampedNumeric(Src value) // NOLINT(runtime/explicit)
: value_(saturated_cast<T>(value)) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
}
// This is not an explicit constructor because we want a seamless conversion
// from StrictNumeric types.
template <typename Src>
constexpr ClampedNumeric(
StrictNumeric<Src> value) // NOLINT(runtime/explicit)
: value_(saturated_cast<T>(static_cast<Src>(value))) {}
// Returns a ClampedNumeric of the specified type, cast from the current
// ClampedNumeric, and saturated to the destination type.
template <typename Dst>
constexpr ClampedNumeric<typename UnderlyingType<Dst>::type> Cast() const {
return *this;
}
// Prototypes for the supported arithmetic operator overloads.
template <typename Src>
constexpr ClampedNumeric& operator+=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator-=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator*=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator/=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator%=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator<<=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator>>=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator&=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator|=(const Src rhs);
template <typename Src>
constexpr ClampedNumeric& operator^=(const Src rhs);
constexpr ClampedNumeric operator-() const {
// The negation of two's complement int min is int min, so that's the
// only overflow case where we will saturate.
return ClampedNumeric<T>(SaturatedNegWrapper(value_));
}
constexpr ClampedNumeric operator~() const {
return ClampedNumeric<decltype(InvertWrapper(T()))>(InvertWrapper(value_));
}
constexpr ClampedNumeric Abs() const {
// The negation of two's complement int min is int min, so that's the
// only overflow case where we will saturate.
return ClampedNumeric<T>(SaturatedAbsWrapper(value_));
}
template <typename U>
constexpr ClampedNumeric<typename MathWrapper<ClampedMaxOp, T, U>::type> Max(
const U rhs) const {
using result_type = typename MathWrapper<ClampedMaxOp, T, U>::type;
return ClampedNumeric<result_type>(
ClampedMaxOp<T, U>::Do(value_, Wrapper<U>::value(rhs)));
}
template <typename U>
constexpr ClampedNumeric<typename MathWrapper<ClampedMinOp, T, U>::type> Min(
const U rhs) const {
using result_type = typename MathWrapper<ClampedMinOp, T, U>::type;
return ClampedNumeric<result_type>(
ClampedMinOp<T, U>::Do(value_, Wrapper<U>::value(rhs)));
}
// This function is available only for integral types. It returns an unsigned
// integer of the same width as the source type, containing the absolute value
// of the source, and properly handling signed min.
constexpr ClampedNumeric<typename UnsignedOrFloatForSize<T>::type>
UnsignedAbs() const {
return ClampedNumeric<typename UnsignedOrFloatForSize<T>::type>(
SafeUnsignedAbs(value_));
}
constexpr ClampedNumeric& operator++() {
*this += 1;
return *this;
}
constexpr ClampedNumeric operator++(int) {
ClampedNumeric value = *this;
*this += 1;
return value;
}
constexpr ClampedNumeric& operator--() {
*this -= 1;
return *this;
}
constexpr ClampedNumeric operator--(int) {
ClampedNumeric value = *this;
*this -= 1;
return value;
}
// These perform the actual math operations on the ClampedNumerics.
// Binary arithmetic operations.
template <template <typename, typename, typename> class M,
typename L,
typename R>
static constexpr ClampedNumeric MathOp(const L lhs, const R rhs) {
using Math = typename MathWrapper<M, L, R>::math;
return ClampedNumeric<T>(
Math::template Do<T>(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs)));
}
// Assignment arithmetic operations.
template <template <typename, typename, typename> class M, typename R>
constexpr ClampedNumeric& MathOp(const R rhs) {
using Math = typename MathWrapper<M, T, R>::math;
*this =
ClampedNumeric<T>(Math::template Do<T>(value_, Wrapper<R>::value(rhs)));
return *this;
}
template <typename Dst>
constexpr operator Dst() const {
return saturated_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>(
value_);
}
// This method extracts the raw integer value without saturating it to the
// destination type as the conversion operator does. This is useful when
// e.g. assigning to an auto type or passing as a deduced template parameter.
constexpr T RawValue() const { return value_; }
private:
T value_;
// These wrappers allow us to handle state the same way for both
// ClampedNumeric and POD arithmetic types.
template <typename Src>
struct Wrapper {
static constexpr Src value(Src value) {
return static_cast<typename UnderlyingType<Src>::type>(value);
}
};
};
// Convience wrapper to return a new ClampedNumeric from the provided arithmetic
// or ClampedNumericType.
template <typename T>
constexpr ClampedNumeric<typename UnderlyingType<T>::type> MakeClampedNum(
const T value) {
return value;
}
#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS
// Overload the ostream output operator to make logging work nicely.
template <typename T>
std::ostream& operator<<(std::ostream& os, const ClampedNumeric<T>& value) {
os << static_cast<T>(value);
return os;
}
#endif
// These implement the variadic wrapper for the math operations.
template <template <typename, typename, typename> class M,
typename L,
typename R>
constexpr ClampedNumeric<typename MathWrapper<M, L, R>::type> ClampMathOp(
const L lhs,
const R rhs) {
using Math = typename MathWrapper<M, L, R>::math;
return ClampedNumeric<typename Math::result_type>::template MathOp<M>(lhs,
rhs);
}
// General purpose wrapper template for arithmetic operations.
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
constexpr ClampedNumeric<typename ResultType<M, L, R, Args...>::type>
ClampMathOp(const L lhs, const R rhs, const Args... args) {
return ClampMathOp<M>(ClampMathOp<M>(lhs, rhs), args...);
}
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Add, +, +=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Sub, -, -=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Mul, *, *=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Div, /, /=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Mod, %, %=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Lsh, <<, <<=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Rsh, >>, >>=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, And, &, &=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Or, |, |=)
BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Xor, ^, ^=)
BASE_NUMERIC_ARITHMETIC_VARIADIC(Clamped, Clamp, Max)
BASE_NUMERIC_ARITHMETIC_VARIADIC(Clamped, Clamp, Min)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsLess, <)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsLessOrEqual, <=)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsGreater, >)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsGreaterOrEqual, >=)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsEqual, ==)
BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsNotEqual, !=)
} // namespace internal
using internal::ClampedNumeric;
using internal::MakeClampedNum;
using internal::ClampMax;
using internal::ClampMin;
using internal::ClampAdd;
using internal::ClampSub;
using internal::ClampMul;
using internal::ClampDiv;
using internal::ClampMod;
using internal::ClampLsh;
using internal::ClampRsh;
using internal::ClampAnd;
using internal::ClampOr;
using internal::ClampXor;
} // namespace base
#endif // BASE_NUMERICS_CLAMPED_MATH_H_

Просмотреть файл

@ -0,0 +1,341 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
#define BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
#include <stddef.h>
#include <stdint.h>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <type_traits>
#include "base/numerics/checked_math.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math_shared_impl.h"
namespace base {
namespace internal {
template <typename T,
typename std::enable_if<std::is_integral<T>::value &&
std::is_signed<T>::value>::type* = nullptr>
constexpr T SaturatedNegWrapper(T value) {
return MustTreatAsConstexpr(value) || !ClampedNegFastOp<T>::is_supported
? (NegateWrapper(value) != std::numeric_limits<T>::lowest()
? NegateWrapper(value)
: std::numeric_limits<T>::max())
: ClampedNegFastOp<T>::Do(value);
}
template <typename T,
typename std::enable_if<std::is_integral<T>::value &&
!std::is_signed<T>::value>::type* = nullptr>
constexpr T SaturatedNegWrapper(T value) {
return T(0);
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
constexpr T SaturatedNegWrapper(T value) {
return -value;
}
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr T SaturatedAbsWrapper(T value) {
// The calculation below is a static identity for unsigned types, but for
// signed integer types it provides a non-branching, saturated absolute value.
// This works because SafeUnsignedAbs() returns an unsigned type, which can
// represent the absolute value of all negative numbers of an equal-width
// integer type. The call to IsValueNegative() then detects overflow in the
// special case of numeric_limits<T>::min(), by evaluating the bit pattern as
// a signed integer value. If it is the overflow case, we end up subtracting
// one from the unsigned result, thus saturating to numeric_limits<T>::max().
return static_cast<T>(SafeUnsignedAbs(value) -
IsValueNegative<T>(SafeUnsignedAbs(value)));
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
constexpr T SaturatedAbsWrapper(T value) {
return value < 0 ? -value : value;
}
template <typename T, typename U, class Enable = void>
struct ClampedAddOp {};
template <typename T, typename U>
struct ClampedAddOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
if (ClampedAddFastOp<T, U>::is_supported)
return ClampedAddFastOp<T, U>::template Do<V>(x, y);
static_assert(std::is_same<V, result_type>::value ||
IsTypeInRangeForNumericType<U, V>::value,
"The saturation result cannot be determined from the "
"provided types.");
const V saturated = CommonMaxOrMin<V>(IsValueNegative(y));
V result = {};
return BASE_NUMERICS_LIKELY((CheckedAddOp<T, U>::Do(x, y, &result)))
? result
: saturated;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedSubOp {};
template <typename T, typename U>
struct ClampedSubOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
// TODO(jschuh) Make this "constexpr if" once we're C++17.
if (ClampedSubFastOp<T, U>::is_supported)
return ClampedSubFastOp<T, U>::template Do<V>(x, y);
static_assert(std::is_same<V, result_type>::value ||
IsTypeInRangeForNumericType<U, V>::value,
"The saturation result cannot be determined from the "
"provided types.");
const V saturated = CommonMaxOrMin<V>(!IsValueNegative(y));
V result = {};
return BASE_NUMERICS_LIKELY((CheckedSubOp<T, U>::Do(x, y, &result)))
? result
: saturated;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedMulOp {};
template <typename T, typename U>
struct ClampedMulOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
// TODO(jschuh) Make this "constexpr if" once we're C++17.
if (ClampedMulFastOp<T, U>::is_supported)
return ClampedMulFastOp<T, U>::template Do<V>(x, y);
V result = {};
const V saturated =
CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
return BASE_NUMERICS_LIKELY((CheckedMulOp<T, U>::Do(x, y, &result)))
? result
: saturated;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedDivOp {};
template <typename T, typename U>
struct ClampedDivOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
V result = {};
if (BASE_NUMERICS_LIKELY((CheckedDivOp<T, U>::Do(x, y, &result))))
return result;
// Saturation goes to max, min, or NaN (if x is zero).
return x ? CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y))
: SaturationDefaultLimits<V>::NaN();
}
};
template <typename T, typename U, class Enable = void>
struct ClampedModOp {};
template <typename T, typename U>
struct ClampedModOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
V result = {};
return BASE_NUMERICS_LIKELY((CheckedModOp<T, U>::Do(x, y, &result)))
? result
: x;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedLshOp {};
// Left shift. Non-zero values saturate in the direction of the sign. A zero
// shifted by any value always results in zero.
template <typename T, typename U>
struct ClampedLshOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = T;
template <typename V = result_type>
static constexpr V Do(T x, U shift) {
static_assert(!std::is_signed<U>::value, "Shift value must be unsigned.");
if (BASE_NUMERICS_LIKELY(shift < std::numeric_limits<T>::digits)) {
// Shift as unsigned to avoid undefined behavior.
V result = static_cast<V>(as_unsigned(x) << shift);
// If the shift can be reversed, we know it was valid.
if (BASE_NUMERICS_LIKELY(result >> shift == x))
return result;
}
return x ? CommonMaxOrMin<V>(IsValueNegative(x)) : 0;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedRshOp {};
// Right shift. Negative values saturate to -1. Positive or 0 saturates to 0.
template <typename T, typename U>
struct ClampedRshOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = T;
template <typename V = result_type>
static constexpr V Do(T x, U shift) {
static_assert(!std::is_signed<U>::value, "Shift value must be unsigned.");
// Signed right shift is odd, because it saturates to -1 or 0.
const V saturated = as_unsigned(V(0)) - IsValueNegative(x);
return BASE_NUMERICS_LIKELY(shift < IntegerBitsPlusSign<T>::value)
? saturated_cast<V>(x >> shift)
: saturated;
}
};
template <typename T, typename U, class Enable = void>
struct ClampedAndOp {};
template <typename T, typename U>
struct ClampedAndOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) & static_cast<result_type>(y);
}
};
template <typename T, typename U, class Enable = void>
struct ClampedOrOp {};
// For simplicity we promote to unsigned integers.
template <typename T, typename U>
struct ClampedOrOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) | static_cast<result_type>(y);
}
};
template <typename T, typename U, class Enable = void>
struct ClampedXorOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
struct ClampedXorOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) ^ static_cast<result_type>(y);
}
};
template <typename T, typename U, class Enable = void>
struct ClampedMaxOp {};
template <typename T, typename U>
struct ClampedMaxOp<
T,
U,
typename std::enable_if<std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
return IsGreater<T, U>::Test(x, y) ? saturated_cast<V>(x)
: saturated_cast<V>(y);
}
};
template <typename T, typename U, class Enable = void>
struct ClampedMinOp {};
template <typename T, typename U>
struct ClampedMinOp<
T,
U,
typename std::enable_if<std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value>::type> {
using result_type = typename LowestValuePromotion<T, U>::type;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
return IsLess<T, U>::Test(x, y) ? saturated_cast<V>(x)
: saturated_cast<V>(y);
}
};
// This is just boilerplate that wraps the standard floating point arithmetic.
// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
template <typename T, typename U> \
struct Clamped##NAME##Op< \
T, U, \
typename std::enable_if<std::is_floating_point<T>::value || \
std::is_floating_point<U>::value>::type> { \
using result_type = typename MaxExponentPromotion<T, U>::type; \
template <typename V = result_type> \
static constexpr V Do(T x, U y) { \
return saturated_cast<V>(x OP y); \
} \
};
BASE_FLOAT_ARITHMETIC_OPS(Add, +)
BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
BASE_FLOAT_ARITHMETIC_OPS(Div, /)
#undef BASE_FLOAT_ARITHMETIC_OPS
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_CLAMPED_MATH_IMPL_H_

Просмотреть файл

@ -0,0 +1,19 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_MATH_CONSTANTS_H_
#define BASE_NUMERICS_MATH_CONSTANTS_H_
namespace base {
constexpr double kPiDouble = 3.14159265358979323846;
constexpr float kPiFloat = 3.14159265358979323846f;
// The mean acceleration due to gravity on Earth in m/s^2.
constexpr double kMeanGravityDouble = 9.80665;
constexpr float kMeanGravityFloat = 9.80665f;
} // namespace base
#endif // BASE_NUMERICS_MATH_CONSTANTS_H_

Просмотреть файл

@ -0,0 +1,27 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_RANGES_H_
#define BASE_NUMERICS_RANGES_H_
#include <algorithm>
#include <cmath>
namespace base {
// To be replaced with std::clamp() from C++17, someday.
template <class T>
constexpr const T& ClampToRange(const T& value, const T& min, const T& max) {
return std::min(std::max(value, min), max);
}
template <typename T>
constexpr bool IsApproximatelyEqual(T lhs, T rhs, T tolerance) {
static_assert(std::is_arithmetic<T>::value, "Argument must be arithmetic");
return std::abs(rhs - lhs) <= tolerance;
}
} // namespace base
#endif // BASE_NUMERICS_RANGES_H_

Просмотреть файл

@ -0,0 +1,358 @@
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_H_
#include <stddef.h>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions_impl.h"
#if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__))
#include "base/numerics/safe_conversions_arm_impl.h"
#define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (1)
#else
#define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (0)
#endif
#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS
#include <ostream>
#endif
namespace base {
namespace internal {
#if !BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
template <typename Dst, typename Src>
struct SaturateFastAsmOp {
static const bool is_supported = false;
static constexpr Dst Do(Src) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<Dst>();
}
};
#endif // BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
#undef BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
// The following special case a few specific integer conversions where we can
// eke out better performance than range checking.
template <typename Dst, typename Src, typename Enable = void>
struct IsValueInRangeFastOp {
static const bool is_supported = false;
static constexpr bool Do(Src value) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
// Signed to signed range comparison.
template <typename Dst, typename Src>
struct IsValueInRangeFastOp<
Dst,
Src,
typename std::enable_if<
std::is_integral<Dst>::value && std::is_integral<Src>::value &&
std::is_signed<Dst>::value && std::is_signed<Src>::value &&
!IsTypeInRangeForNumericType<Dst, Src>::value>::type> {
static const bool is_supported = true;
static constexpr bool Do(Src value) {
// Just downcast to the smaller type, sign extend it back to the original
// type, and then see if it matches the original value.
return value == static_cast<Dst>(value);
}
};
// Signed to unsigned range comparison.
template <typename Dst, typename Src>
struct IsValueInRangeFastOp<
Dst,
Src,
typename std::enable_if<
std::is_integral<Dst>::value && std::is_integral<Src>::value &&
!std::is_signed<Dst>::value && std::is_signed<Src>::value &&
!IsTypeInRangeForNumericType<Dst, Src>::value>::type> {
static const bool is_supported = true;
static constexpr bool Do(Src value) {
// We cast a signed as unsigned to overflow negative values to the top,
// then compare against whichever maximum is smaller, as our upper bound.
return as_unsigned(value) <= as_unsigned(CommonMax<Src, Dst>());
}
};
// Convenience function that returns true if the supplied value is in range
// for the destination type.
template <typename Dst, typename Src>
constexpr bool IsValueInRangeForNumericType(Src value) {
using SrcType = typename internal::UnderlyingType<Src>::type;
return internal::IsValueInRangeFastOp<Dst, SrcType>::is_supported
? internal::IsValueInRangeFastOp<Dst, SrcType>::Do(
static_cast<SrcType>(value))
: internal::DstRangeRelationToSrcRange<Dst>(
static_cast<SrcType>(value))
.IsValid();
}
// checked_cast<> is analogous to static_cast<> for numeric types,
// except that it CHECKs that the specified numeric conversion will not
// overflow or underflow. NaN source will always trigger a CHECK.
template <typename Dst,
class CheckHandler = internal::CheckOnFailure,
typename Src>
constexpr Dst checked_cast(Src value) {
// This throws a compile-time error on evaluating the constexpr if it can be
// determined at compile-time as failing, otherwise it will CHECK at runtime.
using SrcType = typename internal::UnderlyingType<Src>::type;
return BASE_NUMERICS_LIKELY((IsValueInRangeForNumericType<Dst>(value)))
? static_cast<Dst>(static_cast<SrcType>(value))
: CheckHandler::template HandleFailure<Dst>();
}
// Default boundaries for integral/float: max/infinity, lowest/-infinity, 0/NaN.
// You may provide your own limits (e.g. to saturated_cast) so long as you
// implement all of the static constexpr member functions in the class below.
template <typename T>
struct SaturationDefaultLimits : public std::numeric_limits<T> {
static constexpr T NaN() {
return std::numeric_limits<T>::has_quiet_NaN
? std::numeric_limits<T>::quiet_NaN()
: T();
}
using std::numeric_limits<T>::max;
static constexpr T Overflow() {
return std::numeric_limits<T>::has_infinity
? std::numeric_limits<T>::infinity()
: std::numeric_limits<T>::max();
}
using std::numeric_limits<T>::lowest;
static constexpr T Underflow() {
return std::numeric_limits<T>::has_infinity
? std::numeric_limits<T>::infinity() * -1
: std::numeric_limits<T>::lowest();
}
};
template <typename Dst, template <typename> class S, typename Src>
constexpr Dst saturated_cast_impl(Src value, RangeCheck constraint) {
// For some reason clang generates much better code when the branch is
// structured exactly this way, rather than a sequence of checks.
return !constraint.IsOverflowFlagSet()
? (!constraint.IsUnderflowFlagSet() ? static_cast<Dst>(value)
: S<Dst>::Underflow())
// Skip this check for integral Src, which cannot be NaN.
: (std::is_integral<Src>::value || !constraint.IsUnderflowFlagSet()
? S<Dst>::Overflow()
: S<Dst>::NaN());
}
// We can reduce the number of conditions and get slightly better performance
// for normal signed and unsigned integer ranges. And in the specific case of
// Arm, we can use the optimized saturation instructions.
template <typename Dst, typename Src, typename Enable = void>
struct SaturateFastOp {
static const bool is_supported = false;
static constexpr Dst Do(Src value) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<Dst>();
}
};
template <typename Dst, typename Src>
struct SaturateFastOp<
Dst,
Src,
typename std::enable_if<std::is_integral<Src>::value &&
std::is_integral<Dst>::value &&
SaturateFastAsmOp<Dst, Src>::is_supported>::type> {
static const bool is_supported = true;
static Dst Do(Src value) { return SaturateFastAsmOp<Dst, Src>::Do(value); }
};
template <typename Dst, typename Src>
struct SaturateFastOp<
Dst,
Src,
typename std::enable_if<std::is_integral<Src>::value &&
std::is_integral<Dst>::value &&
!SaturateFastAsmOp<Dst, Src>::is_supported>::type> {
static const bool is_supported = true;
static Dst Do(Src value) {
// The exact order of the following is structured to hit the correct
// optimization heuristics across compilers. Do not change without
// checking the emitted code.
Dst saturated = CommonMaxOrMin<Dst, Src>(
IsMaxInRangeForNumericType<Dst, Src>() ||
(!IsMinInRangeForNumericType<Dst, Src>() && IsValueNegative(value)));
return BASE_NUMERICS_LIKELY(IsValueInRangeForNumericType<Dst>(value))
? static_cast<Dst>(value)
: saturated;
}
};
// saturated_cast<> is analogous to static_cast<> for numeric types, except
// that the specified numeric conversion will saturate by default rather than
// overflow or underflow, and NaN assignment to an integral will return 0.
// All boundary condition behaviors can be overriden with a custom handler.
template <typename Dst,
template <typename> class SaturationHandler = SaturationDefaultLimits,
typename Src>
constexpr Dst saturated_cast(Src value) {
using SrcType = typename UnderlyingType<Src>::type;
return !IsCompileTimeConstant(value) &&
SaturateFastOp<Dst, SrcType>::is_supported &&
std::is_same<SaturationHandler<Dst>,
SaturationDefaultLimits<Dst>>::value
? SaturateFastOp<Dst, SrcType>::Do(static_cast<SrcType>(value))
: saturated_cast_impl<Dst, SaturationHandler, SrcType>(
static_cast<SrcType>(value),
DstRangeRelationToSrcRange<Dst, SaturationHandler, SrcType>(
static_cast<SrcType>(value)));
}
// strict_cast<> is analogous to static_cast<> for numeric types, except that
// it will cause a compile failure if the destination type is not large enough
// to contain any value in the source type. It performs no runtime checking.
template <typename Dst, typename Src>
constexpr Dst strict_cast(Src value) {
using SrcType = typename UnderlyingType<Src>::type;
static_assert(UnderlyingType<Src>::is_numeric, "Argument must be numeric.");
static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
// If you got here from a compiler error, it's because you tried to assign
// from a source type to a destination type that has insufficient range.
// The solution may be to change the destination type you're assigning to,
// and use one large enough to represent the source.
// Alternatively, you may be better served with the checked_cast<> or
// saturated_cast<> template functions for your particular use case.
static_assert(StaticDstRangeRelationToSrcRange<Dst, SrcType>::value ==
NUMERIC_RANGE_CONTAINED,
"The source type is out of range for the destination type. "
"Please see strict_cast<> comments for more information.");
return static_cast<Dst>(static_cast<SrcType>(value));
}
// Some wrappers to statically check that a type is in range.
template <typename Dst, typename Src, class Enable = void>
struct IsNumericRangeContained {
static const bool value = false;
};
template <typename Dst, typename Src>
struct IsNumericRangeContained<
Dst,
Src,
typename std::enable_if<ArithmeticOrUnderlyingEnum<Dst>::value &&
ArithmeticOrUnderlyingEnum<Src>::value>::type> {
static const bool value = StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
NUMERIC_RANGE_CONTAINED;
};
// StrictNumeric implements compile time range checking between numeric types by
// wrapping assignment operations in a strict_cast. This class is intended to be
// used for function arguments and return types, to ensure the destination type
// can always contain the source type. This is essentially the same as enforcing
// -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied
// incrementally at API boundaries, making it easier to convert code so that it
// compiles cleanly with truncation warnings enabled.
// This template should introduce no runtime overhead, but it also provides no
// runtime checking of any of the associated mathematical operations. Use
// CheckedNumeric for runtime range checks of the actual value being assigned.
template <typename T>
class StrictNumeric {
public:
using type = T;
constexpr StrictNumeric() : value_(0) {}
// Copy constructor.
template <typename Src>
constexpr StrictNumeric(const StrictNumeric<Src>& rhs)
: value_(strict_cast<T>(rhs.value_)) {}
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to StrictNumerics to make them easier to use.
template <typename Src>
constexpr StrictNumeric(Src value) // NOLINT(runtime/explicit)
: value_(strict_cast<T>(value)) {}
// If you got here from a compiler error, it's because you tried to assign
// from a source type to a destination type that has insufficient range.
// The solution may be to change the destination type you're assigning to,
// and use one large enough to represent the source.
// If you're assigning from a CheckedNumeric<> class, you may be able to use
// the AssignIfValid() member function, specify a narrower destination type to
// the member value functions (e.g. val.template ValueOrDie<Dst>()), use one
// of the value helper functions (e.g. ValueOrDieForType<Dst>(val)).
// If you've encountered an _ambiguous overload_ you can use a static_cast<>
// to explicitly cast the result to the destination type.
// If none of that works, you may be better served with the checked_cast<> or
// saturated_cast<> template functions for your particular use case.
template <typename Dst,
typename std::enable_if<
IsNumericRangeContained<Dst, T>::value>::type* = nullptr>
constexpr operator Dst() const {
return static_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>(value_);
}
private:
const T value_;
};
// Convience wrapper returns a StrictNumeric from the provided arithmetic type.
template <typename T>
constexpr StrictNumeric<typename UnderlyingType<T>::type> MakeStrictNum(
const T value) {
return value;
}
#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS
// Overload the ostream output operator to make logging work nicely.
template <typename T>
std::ostream& operator<<(std::ostream& os, const StrictNumeric<T>& value) {
os << static_cast<T>(value);
return os;
}
#endif
#define BASE_NUMERIC_COMPARISON_OPERATORS(CLASS, NAME, OP) \
template <typename L, typename R, \
typename std::enable_if< \
internal::Is##CLASS##Op<L, R>::value>::type* = nullptr> \
constexpr bool operator OP(const L lhs, const R rhs) { \
return SafeCompare<NAME, typename UnderlyingType<L>::type, \
typename UnderlyingType<R>::type>(lhs, rhs); \
}
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLess, <)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLessOrEqual, <=)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreater, >)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreaterOrEqual, >=)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsEqual, ==)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsNotEqual, !=)
} // namespace internal
using internal::as_signed;
using internal::as_unsigned;
using internal::checked_cast;
using internal::strict_cast;
using internal::saturated_cast;
using internal::SafeUnsignedAbs;
using internal::StrictNumeric;
using internal::MakeStrictNum;
using internal::IsValueInRangeForNumericType;
using internal::IsTypeInRangeForNumericType;
using internal::IsValueNegative;
// Explicitly make a shorter size_t alias for convenience.
using SizeT = StrictNumeric<size_t>;
} // namespace base
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_H_

Просмотреть файл

@ -0,0 +1,51 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_ARM_IMPL_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_ARM_IMPL_H_
#include <cassert>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions_impl.h"
namespace base {
namespace internal {
// Fast saturation to a destination type.
template <typename Dst, typename Src>
struct SaturateFastAsmOp {
static constexpr bool is_supported =
std::is_signed<Src>::value && std::is_integral<Dst>::value &&
std::is_integral<Src>::value &&
IntegerBitsPlusSign<Src>::value <= IntegerBitsPlusSign<int32_t>::value &&
IntegerBitsPlusSign<Dst>::value <= IntegerBitsPlusSign<int32_t>::value &&
!IsTypeInRangeForNumericType<Dst, Src>::value;
__attribute__((always_inline)) static Dst Do(Src value) {
int32_t src = value;
typename std::conditional<std::is_signed<Dst>::value, int32_t,
uint32_t>::type result;
if (std::is_signed<Dst>::value) {
asm("ssat %[dst], %[shift], %[src]"
: [dst] "=r"(result)
: [src] "r"(src), [shift] "n"(IntegerBitsPlusSign<Dst>::value <= 32
? IntegerBitsPlusSign<Dst>::value
: 32));
} else {
asm("usat %[dst], %[shift], %[src]"
: [dst] "=r"(result)
: [src] "r"(src), [shift] "n"(IntegerBitsPlusSign<Dst>::value < 32
? IntegerBitsPlusSign<Dst>::value
: 31));
}
return static_cast<Dst>(result);
}
};
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_ARM_IMPL_H_

Просмотреть файл

@ -0,0 +1,850 @@
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#include <stdint.h>
#include <limits>
#include <type_traits>
#if defined(__GNUC__) || defined(__clang__)
#define BASE_NUMERICS_LIKELY(x) __builtin_expect(!!(x), 1)
#define BASE_NUMERICS_UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
#define BASE_NUMERICS_LIKELY(x) (x)
#define BASE_NUMERICS_UNLIKELY(x) (x)
#endif
namespace base {
namespace internal {
// The std library doesn't provide a binary max_exponent for integers, however
// we can compute an analog using std::numeric_limits<>::digits.
template <typename NumericType>
struct MaxExponent {
static const int value = std::is_floating_point<NumericType>::value
? std::numeric_limits<NumericType>::max_exponent
: std::numeric_limits<NumericType>::digits + 1;
};
// The number of bits (including the sign) in an integer. Eliminates sizeof
// hacks.
template <typename NumericType>
struct IntegerBitsPlusSign {
static const int value = std::numeric_limits<NumericType>::digits +
std::is_signed<NumericType>::value;
};
// Helper templates for integer manipulations.
template <typename Integer>
struct PositionOfSignBit {
static const size_t value = IntegerBitsPlusSign<Integer>::value - 1;
};
// Determines if a numeric value is negative without throwing compiler
// warnings on: unsigned(value) < 0.
template <typename T,
typename std::enable_if<std::is_signed<T>::value>::type* = nullptr>
constexpr bool IsValueNegative(T value) {
static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
return value < 0;
}
template <typename T,
typename std::enable_if<!std::is_signed<T>::value>::type* = nullptr>
constexpr bool IsValueNegative(T) {
static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
return false;
}
// This performs a fast negation, returning a signed value. It works on unsigned
// arguments, but probably doesn't do what you want for any unsigned value
// larger than max / 2 + 1 (i.e. signed min cast to unsigned).
template <typename T>
constexpr typename std::make_signed<T>::type ConditionalNegate(
T x,
bool is_negative) {
static_assert(std::is_integral<T>::value, "Type must be integral");
using SignedT = typename std::make_signed<T>::type;
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<SignedT>(
(static_cast<UnsignedT>(x) ^ -SignedT(is_negative)) + is_negative);
}
// This performs a safe, absolute value via unsigned overflow.
template <typename T>
constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value) {
static_assert(std::is_integral<T>::value, "Type must be integral");
using UnsignedT = typename std::make_unsigned<T>::type;
return IsValueNegative(value) ? 0 - static_cast<UnsignedT>(value)
: static_cast<UnsignedT>(value);
}
// This allows us to switch paths on known compile-time constants.
#if defined(__clang__) || defined(__GNUC__)
constexpr bool CanDetectCompileTimeConstant() {
return true;
}
template <typename T>
constexpr bool IsCompileTimeConstant(const T v) {
return __builtin_constant_p(v);
}
#else
constexpr bool CanDetectCompileTimeConstant() {
return false;
}
template <typename T>
constexpr bool IsCompileTimeConstant(const T) {
return false;
}
#endif
template <typename T>
constexpr bool MustTreatAsConstexpr(const T v) {
// Either we can't detect a compile-time constant, and must always use the
// constexpr path, or we know we have a compile-time constant.
return !CanDetectCompileTimeConstant() || IsCompileTimeConstant(v);
}
// Forces a crash, like a CHECK(false). Used for numeric boundary errors.
// Also used in a constexpr template to trigger a compilation failure on
// an error condition.
struct CheckOnFailure {
template <typename T>
static T HandleFailure() {
#if defined(_MSC_VER)
__debugbreak();
#elif defined(__GNUC__) || defined(__clang__)
__builtin_trap();
#else
((void)(*(volatile char*)0 = 0));
#endif
return T();
}
};
enum IntegerRepresentation {
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED
};
// A range for a given nunmeric Src type is contained for a given numeric Dst
// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true.
// We implement this as template specializations rather than simple static
// comparisons to ensure type correctness in our comparisons.
enum NumericRangeRepresentation {
NUMERIC_RANGE_NOT_CONTAINED,
NUMERIC_RANGE_CONTAINED
};
// Helper templates to statically determine if our destination type can contain
// maximum and minimum values represented by the source type.
template <typename Dst,
typename Src,
IntegerRepresentation DstSign = std::is_signed<Dst>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
IntegerRepresentation SrcSign = std::is_signed<Src>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED>
struct StaticDstRangeRelationToSrcRange;
// Same sign: Dst is guaranteed to contain Src only if its range is equal or
// larger.
template <typename Dst, typename Src, IntegerRepresentation Sign>
struct StaticDstRangeRelationToSrcRange<Dst, Src, Sign, Sign> {
static const NumericRangeRepresentation value =
MaxExponent<Dst>::value >= MaxExponent<Src>::value
? NUMERIC_RANGE_CONTAINED
: NUMERIC_RANGE_NOT_CONTAINED;
};
// Unsigned to signed: Dst is guaranteed to contain source only if its range is
// larger.
template <typename Dst, typename Src>
struct StaticDstRangeRelationToSrcRange<Dst,
Src,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED> {
static const NumericRangeRepresentation value =
MaxExponent<Dst>::value > MaxExponent<Src>::value
? NUMERIC_RANGE_CONTAINED
: NUMERIC_RANGE_NOT_CONTAINED;
};
// Signed to unsigned: Dst cannot be statically determined to contain Src.
template <typename Dst, typename Src>
struct StaticDstRangeRelationToSrcRange<Dst,
Src,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED> {
static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED;
};
// This class wraps the range constraints as separate booleans so the compiler
// can identify constants and eliminate unused code paths.
class RangeCheck {
public:
constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound)
: is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound) {}
constexpr RangeCheck() : is_underflow_(0), is_overflow_(0) {}
constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; }
constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; }
constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; }
constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; }
constexpr bool IsOverflowFlagSet() const { return is_overflow_; }
constexpr bool IsUnderflowFlagSet() const { return is_underflow_; }
constexpr bool operator==(const RangeCheck rhs) const {
return is_underflow_ == rhs.is_underflow_ &&
is_overflow_ == rhs.is_overflow_;
}
constexpr bool operator!=(const RangeCheck rhs) const {
return !(*this == rhs);
}
private:
// Do not change the order of these member variables. The integral conversion
// optimization depends on this exact order.
const bool is_underflow_;
const bool is_overflow_;
};
// The following helper template addresses a corner case in range checks for
// conversion from a floating-point type to an integral type of smaller range
// but larger precision (e.g. float -> unsigned). The problem is as follows:
// 1. Integral maximum is always one less than a power of two, so it must be
// truncated to fit the mantissa of the floating point. The direction of
// rounding is implementation defined, but by default it's always IEEE
// floats, which round to nearest and thus result in a value of larger
// magnitude than the integral value.
// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX
// // is 4294967295u.
// 2. If the floating point value is equal to the promoted integral maximum
// value, a range check will erroneously pass.
// Example: (4294967296f <= 4294967295u) // This is true due to a precision
// // loss in rounding up to float.
// 3. When the floating point value is then converted to an integral, the
// resulting value is out of range for the target integral type and
// thus is implementation defined.
// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0.
// To fix this bug we manually truncate the maximum value when the destination
// type is an integral of larger precision than the source floating-point type,
// such that the resulting maximum is represented exactly as a floating point.
template <typename Dst, typename Src, template <typename> class Bounds>
struct NarrowingRange {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = typename std::numeric_limits<Dst>;
// Computes the mask required to make an accurate comparison between types.
static const int kShift =
(MaxExponent<Src>::value > MaxExponent<Dst>::value &&
SrcLimits::digits < DstLimits::digits)
? (DstLimits::digits - SrcLimits::digits)
: 0;
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
// Masks out the integer bits that are beyond the precision of the
// intermediate type used for comparison.
static constexpr T Adjust(T value) {
static_assert(std::is_same<T, Dst>::value, "");
static_assert(kShift < DstLimits::digits, "");
return static_cast<T>(
ConditionalNegate(SafeUnsignedAbs(value) & ~((T(1) << kShift) - T(1)),
IsValueNegative(value)));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static constexpr T Adjust(T value) {
static_assert(std::is_same<T, Dst>::value, "");
static_assert(kShift == 0, "");
return value;
}
static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); }
static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); }
};
template <typename Dst,
typename Src,
template <typename> class Bounds,
IntegerRepresentation DstSign = std::is_signed<Dst>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
IntegerRepresentation SrcSign = std::is_signed<Src>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
NumericRangeRepresentation DstRange =
StaticDstRangeRelationToSrcRange<Dst, Src>::value>
struct DstRangeRelationToSrcRangeImpl;
// The following templates are for ranges that must be verified at runtime. We
// split it into checks based on signedness to avoid confusing casts and
// compiler warnings on signed an unsigned comparisons.
// Same sign narrowing: The range is contained for normal limits.
template <typename Dst,
typename Src,
template <typename> class Bounds,
IntegerRepresentation DstSign,
IntegerRepresentation SrcSign>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
DstSign,
SrcSign,
NUMERIC_RANGE_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(
static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() ||
static_cast<Dst>(value) >= DstLimits::lowest(),
static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() ||
static_cast<Dst>(value) <= DstLimits::max());
}
};
// Signed to signed narrowing: Both the upper and lower boundaries may be
// exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max());
}
};
// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for
// standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(
DstLimits::lowest() == Dst(0) || value >= DstLimits::lowest(),
value <= DstLimits::max());
}
};
// Unsigned to signed: Only the upper bound can be exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
return RangeCheck(DstLimits::lowest() <= Dst(0) ||
static_cast<Promotion>(value) >=
static_cast<Promotion>(DstLimits::lowest()),
static_cast<Promotion>(value) <=
static_cast<Promotion>(DstLimits::max()));
}
};
// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
// and any negative value exceeds the lower boundary for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
return RangeCheck(
value >= Src(0) && (DstLimits::lowest() == 0 ||
static_cast<Dst>(value) >= DstLimits::lowest()),
static_cast<Promotion>(SrcLimits::max()) <=
static_cast<Promotion>(DstLimits::max()) ||
static_cast<Promotion>(value) <=
static_cast<Promotion>(DstLimits::max()));
}
};
// Simple wrapper for statically checking if a type's range is contained.
template <typename Dst, typename Src>
struct IsTypeInRangeForNumericType {
static const bool value = StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
NUMERIC_RANGE_CONTAINED;
};
template <typename Dst,
template <typename> class Bounds = std::numeric_limits,
typename Src>
constexpr RangeCheck DstRangeRelationToSrcRange(Src value) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
static_assert(Bounds<Dst>::lowest() < Bounds<Dst>::max(), "");
return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value);
}
// Integer promotion templates used by the portable checked integer arithmetic.
template <size_t Size, bool IsSigned>
struct IntegerForDigitsAndSign;
#define INTEGER_FOR_DIGITS_AND_SIGN(I) \
template <> \
struct IntegerForDigitsAndSign<IntegerBitsPlusSign<I>::value, \
std::is_signed<I>::value> { \
using type = I; \
}
INTEGER_FOR_DIGITS_AND_SIGN(int8_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint8_t);
INTEGER_FOR_DIGITS_AND_SIGN(int16_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint16_t);
INTEGER_FOR_DIGITS_AND_SIGN(int32_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint32_t);
INTEGER_FOR_DIGITS_AND_SIGN(int64_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint64_t);
#undef INTEGER_FOR_DIGITS_AND_SIGN
// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
// support 128-bit math, then the ArithmeticPromotion template below will need
// to be updated (or more likely replaced with a decltype expression).
static_assert(IntegerBitsPlusSign<intmax_t>::value == 64,
"Max integer size not supported for this toolchain.");
template <typename Integer, bool IsSigned = std::is_signed<Integer>::value>
struct TwiceWiderInteger {
using type =
typename IntegerForDigitsAndSign<IntegerBitsPlusSign<Integer>::value * 2,
IsSigned>::type;
};
enum ArithmeticPromotionCategory {
LEFT_PROMOTION, // Use the type of the left-hand argument.
RIGHT_PROMOTION // Use the type of the right-hand argument.
};
// Determines the type that can represent the largest positive value.
template <typename Lhs,
typename Rhs,
ArithmeticPromotionCategory Promotion =
(MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
? LEFT_PROMOTION
: RIGHT_PROMOTION>
struct MaxExponentPromotion;
template <typename Lhs, typename Rhs>
struct MaxExponentPromotion<Lhs, Rhs, LEFT_PROMOTION> {
using type = Lhs;
};
template <typename Lhs, typename Rhs>
struct MaxExponentPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
using type = Rhs;
};
// Determines the type that can represent the lowest arithmetic value.
template <typename Lhs,
typename Rhs,
ArithmeticPromotionCategory Promotion =
std::is_signed<Lhs>::value
? (std::is_signed<Rhs>::value
? (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value
? LEFT_PROMOTION
: RIGHT_PROMOTION)
: LEFT_PROMOTION)
: (std::is_signed<Rhs>::value
? RIGHT_PROMOTION
: (MaxExponent<Lhs>::value < MaxExponent<Rhs>::value
? LEFT_PROMOTION
: RIGHT_PROMOTION))>
struct LowestValuePromotion;
template <typename Lhs, typename Rhs>
struct LowestValuePromotion<Lhs, Rhs, LEFT_PROMOTION> {
using type = Lhs;
};
template <typename Lhs, typename Rhs>
struct LowestValuePromotion<Lhs, Rhs, RIGHT_PROMOTION> {
using type = Rhs;
};
// Determines the type that is best able to represent an arithmetic result.
template <
typename Lhs,
typename Rhs = Lhs,
bool is_intmax_type =
std::is_integral<typename MaxExponentPromotion<Lhs, Rhs>::type>::value&&
IntegerBitsPlusSign<typename MaxExponentPromotion<Lhs, Rhs>::type>::
value == IntegerBitsPlusSign<intmax_t>::value,
bool is_max_exponent =
StaticDstRangeRelationToSrcRange<
typename MaxExponentPromotion<Lhs, Rhs>::type,
Lhs>::value ==
NUMERIC_RANGE_CONTAINED&& StaticDstRangeRelationToSrcRange<
typename MaxExponentPromotion<Lhs, Rhs>::type,
Rhs>::value == NUMERIC_RANGE_CONTAINED>
struct BigEnoughPromotion;
// The side with the max exponent is big enough.
template <typename Lhs, typename Rhs, bool is_intmax_type>
struct BigEnoughPromotion<Lhs, Rhs, is_intmax_type, true> {
using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
static const bool is_contained = true;
};
// We can use a twice wider type to fit.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotion<Lhs, Rhs, false, false> {
using type =
typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
std::is_signed<Lhs>::value ||
std::is_signed<Rhs>::value>::type;
static const bool is_contained = true;
};
// No type is large enough.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotion<Lhs, Rhs, true, false> {
using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
static const bool is_contained = false;
};
// We can statically check if operations on the provided types can wrap, so we
// can skip the checked operations if they're not needed. So, for an integer we
// care if the destination type preserves the sign and is twice the width of
// the source.
template <typename T, typename Lhs, typename Rhs = Lhs>
struct IsIntegerArithmeticSafe {
static const bool value =
!std::is_floating_point<T>::value &&
!std::is_floating_point<Lhs>::value &&
!std::is_floating_point<Rhs>::value &&
std::is_signed<T>::value >= std::is_signed<Lhs>::value &&
IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Lhs>::value) &&
std::is_signed<T>::value >= std::is_signed<Rhs>::value &&
IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Rhs>::value);
};
// Promotes to a type that can represent any possible result of a binary
// arithmetic operation with the source types.
template <typename Lhs,
typename Rhs,
bool is_promotion_possible = IsIntegerArithmeticSafe<
typename std::conditional<std::is_signed<Lhs>::value ||
std::is_signed<Rhs>::value,
intmax_t,
uintmax_t>::type,
typename MaxExponentPromotion<Lhs, Rhs>::type>::value>
struct FastIntegerArithmeticPromotion;
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotion<Lhs, Rhs, true> {
using type =
typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
std::is_signed<Lhs>::value ||
std::is_signed<Rhs>::value>::type;
static_assert(IsIntegerArithmeticSafe<type, Lhs, Rhs>::value, "");
static const bool is_contained = true;
};
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotion<Lhs, Rhs, false> {
using type = typename BigEnoughPromotion<Lhs, Rhs>::type;
static const bool is_contained = false;
};
// Extracts the underlying type from an enum.
template <typename T, bool is_enum = std::is_enum<T>::value>
struct ArithmeticOrUnderlyingEnum;
template <typename T>
struct ArithmeticOrUnderlyingEnum<T, true> {
using type = typename std::underlying_type<T>::type;
static const bool value = std::is_arithmetic<type>::value;
};
template <typename T>
struct ArithmeticOrUnderlyingEnum<T, false> {
using type = T;
static const bool value = std::is_arithmetic<type>::value;
};
// The following are helper templates used in the CheckedNumeric class.
template <typename T>
class CheckedNumeric;
template <typename T>
class ClampedNumeric;
template <typename T>
class StrictNumeric;
// Used to treat CheckedNumeric and arithmetic underlying types the same.
template <typename T>
struct UnderlyingType {
using type = typename ArithmeticOrUnderlyingEnum<T>::type;
static const bool is_numeric = std::is_arithmetic<type>::value;
static const bool is_checked = false;
static const bool is_clamped = false;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<CheckedNumeric<T>> {
using type = T;
static const bool is_numeric = true;
static const bool is_checked = true;
static const bool is_clamped = false;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<ClampedNumeric<T>> {
using type = T;
static const bool is_numeric = true;
static const bool is_checked = false;
static const bool is_clamped = true;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<StrictNumeric<T>> {
using type = T;
static const bool is_numeric = true;
static const bool is_checked = false;
static const bool is_clamped = false;
static const bool is_strict = true;
};
template <typename L, typename R>
struct IsCheckedOp {
static const bool value =
UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
};
template <typename L, typename R>
struct IsClampedOp {
static const bool value =
UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_clamped || UnderlyingType<R>::is_clamped) &&
!(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
};
template <typename L, typename R>
struct IsStrictOp {
static const bool value =
UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_strict || UnderlyingType<R>::is_strict) &&
!(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked) &&
!(UnderlyingType<L>::is_clamped || UnderlyingType<R>::is_clamped);
};
// as_signed<> returns the supplied integral value (or integral castable
// Numeric template) cast as a signed integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_signed<T>::type>(t)
template <typename Src>
constexpr typename std::make_signed<
typename base::internal::UnderlyingType<Src>::type>::type
as_signed(const Src value) {
static_assert(std::is_integral<decltype(as_signed(value))>::value,
"Argument must be a signed or unsigned integer type.");
return static_cast<decltype(as_signed(value))>(value);
}
// as_unsigned<> returns the supplied integral value (or integral castable
// Numeric template) cast as an unsigned integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_unsigned<T>::type>(t)
template <typename Src>
constexpr typename std::make_unsigned<
typename base::internal::UnderlyingType<Src>::type>::type
as_unsigned(const Src value) {
static_assert(std::is_integral<decltype(as_unsigned(value))>::value,
"Argument must be a signed or unsigned integer type.");
return static_cast<decltype(as_unsigned(value))>(value);
}
template <typename L, typename R>
constexpr bool IsLessImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) <
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsLess {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsLessImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsLessOrEqualImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) <=
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsLessOrEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsLessOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsGreaterImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) >
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsGreater {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsGreaterImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsGreaterOrEqualImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) >=
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsGreaterOrEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsGreaterOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
struct IsEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return DstRangeRelationToSrcRange<R>(lhs) ==
DstRangeRelationToSrcRange<L>(rhs) &&
static_cast<decltype(lhs + rhs)>(lhs) ==
static_cast<decltype(lhs + rhs)>(rhs);
}
};
template <typename L, typename R>
struct IsNotEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return DstRangeRelationToSrcRange<R>(lhs) !=
DstRangeRelationToSrcRange<L>(rhs) ||
static_cast<decltype(lhs + rhs)>(lhs) !=
static_cast<decltype(lhs + rhs)>(rhs);
}
};
// These perform the actual math operations on the CheckedNumerics.
// Binary arithmetic operations.
template <template <typename, typename> class C, typename L, typename R>
constexpr bool SafeCompare(const L lhs, const R rhs) {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
using Promotion = BigEnoughPromotion<L, R>;
using BigType = typename Promotion::type;
return Promotion::is_contained
// Force to a larger type for speed if both are contained.
? C<BigType, BigType>::Test(
static_cast<BigType>(static_cast<L>(lhs)),
static_cast<BigType>(static_cast<R>(rhs)))
// Let the template functions figure it out for mixed types.
: C<L, R>::Test(lhs, rhs);
}
template <typename Dst, typename Src>
constexpr bool IsMaxInRangeForNumericType() {
return IsGreaterOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::max(),
std::numeric_limits<Src>::max());
}
template <typename Dst, typename Src>
constexpr bool IsMinInRangeForNumericType() {
return IsLessOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::lowest(),
std::numeric_limits<Src>::lowest());
}
template <typename Dst, typename Src>
constexpr Dst CommonMax() {
return !IsMaxInRangeForNumericType<Dst, Src>()
? Dst(std::numeric_limits<Dst>::max())
: Dst(std::numeric_limits<Src>::max());
}
template <typename Dst, typename Src>
constexpr Dst CommonMin() {
return !IsMinInRangeForNumericType<Dst, Src>()
? Dst(std::numeric_limits<Dst>::lowest())
: Dst(std::numeric_limits<Src>::lowest());
}
// This is a wrapper to generate return the max or min for a supplied type.
// If the argument is false, the returned value is the maximum. If true the
// returned value is the minimum.
template <typename Dst, typename Src = Dst>
constexpr Dst CommonMaxOrMin(bool is_min) {
return is_min ? CommonMin<Dst, Src>() : CommonMax<Dst, Src>();
}
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_

Просмотреть файл

@ -0,0 +1,12 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_MATH_H_
#define BASE_NUMERICS_SAFE_MATH_H_
#include "base/numerics/checked_math.h"
#include "base/numerics/clamped_math.h"
#include "base/numerics/safe_conversions.h"
#endif // BASE_NUMERICS_SAFE_MATH_H_

Просмотреть файл

@ -0,0 +1,122 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
#define BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
#include <cassert>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
namespace base {
namespace internal {
template <typename T, typename U>
struct CheckedMulFastAsmOp {
static const bool is_supported =
FastIntegerArithmeticPromotion<T, U>::is_contained;
// The following is much more efficient than the Clang and GCC builtins for
// performing overflow-checked multiplication when a twice wider type is
// available. The below compiles down to 2-3 instructions, depending on the
// width of the types in use.
// As an example, an int32_t multiply compiles to:
// smull r0, r1, r0, r1
// cmp r1, r1, asr #31
// And an int16_t multiply compiles to:
// smulbb r1, r1, r0
// asr r2, r1, #16
// cmp r2, r1, asr #15
template <typename V>
__attribute__((always_inline)) static bool Do(T x, U y, V* result) {
using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
Promotion presult;
presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
*result = static_cast<V>(presult);
return IsValueInRangeForNumericType<V>(presult);
}
};
template <typename T, typename U>
struct ClampedAddFastAsmOp {
static const bool is_supported =
BigEnoughPromotion<T, U>::is_contained &&
IsTypeInRangeForNumericType<
int32_t,
typename BigEnoughPromotion<T, U>::type>::value;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
// This will get promoted to an int, so let the compiler do whatever is
// clever and rely on the saturated cast to bounds check.
if (IsIntegerArithmeticSafe<int, T, U>::value)
return saturated_cast<V>(x + y);
int32_t result;
int32_t x_i32 = checked_cast<int32_t>(x);
int32_t y_i32 = checked_cast<int32_t>(y);
asm("qadd %[result], %[first], %[second]"
: [result] "=r"(result)
: [first] "r"(x_i32), [second] "r"(y_i32));
return saturated_cast<V>(result);
}
};
template <typename T, typename U>
struct ClampedSubFastAsmOp {
static const bool is_supported =
BigEnoughPromotion<T, U>::is_contained &&
IsTypeInRangeForNumericType<
int32_t,
typename BigEnoughPromotion<T, U>::type>::value;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
// This will get promoted to an int, so let the compiler do whatever is
// clever and rely on the saturated cast to bounds check.
if (IsIntegerArithmeticSafe<int, T, U>::value)
return saturated_cast<V>(x - y);
int32_t result;
int32_t x_i32 = checked_cast<int32_t>(x);
int32_t y_i32 = checked_cast<int32_t>(y);
asm("qsub %[result], %[first], %[second]"
: [result] "=r"(result)
: [first] "r"(x_i32), [second] "r"(y_i32));
return saturated_cast<V>(result);
}
};
template <typename T, typename U>
struct ClampedMulFastAsmOp {
static const bool is_supported = CheckedMulFastAsmOp<T, U>::is_supported;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
// Use the CheckedMulFastAsmOp for full-width 32-bit values, because
// it's fewer instructions than promoting and then saturating.
if (!IsIntegerArithmeticSafe<int32_t, T, U>::value &&
!IsIntegerArithmeticSafe<uint32_t, T, U>::value) {
V result;
if (CheckedMulFastAsmOp<T, U>::Do(x, y, &result))
return result;
return CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
}
assert((FastIntegerArithmeticPromotion<T, U>::is_contained));
using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
return saturated_cast<V>(static_cast<Promotion>(x) *
static_cast<Promotion>(y));
}
};
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_

Просмотреть файл

@ -0,0 +1,157 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_
#define BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_
#include <cassert>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
#if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__))
#include "base/numerics/safe_math_arm_impl.h"
#define BASE_HAS_ASSEMBLER_SAFE_MATH (1)
#else
#define BASE_HAS_ASSEMBLER_SAFE_MATH (0)
#endif
namespace base {
namespace internal {
// These are the non-functioning boilerplate implementations of the optimized
// safe math routines.
#if !BASE_HAS_ASSEMBLER_SAFE_MATH
template <typename T, typename U>
struct CheckedMulFastAsmOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct ClampedAddFastAsmOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T, typename U>
struct ClampedSubFastAsmOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T, typename U>
struct ClampedMulFastAsmOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
#endif // BASE_HAS_ASSEMBLER_SAFE_MATH
#undef BASE_HAS_ASSEMBLER_SAFE_MATH
template <typename T, typename U>
struct CheckedAddFastOp {
static const bool is_supported = true;
template <typename V>
__attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
return !__builtin_add_overflow(x, y, result);
}
};
template <typename T, typename U>
struct CheckedSubFastOp {
static const bool is_supported = true;
template <typename V>
__attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
return !__builtin_sub_overflow(x, y, result);
}
};
template <typename T, typename U>
struct CheckedMulFastOp {
#if defined(__clang__)
// TODO(jschuh): Get the Clang runtime library issues sorted out so we can
// support full-width, mixed-sign multiply builtins.
// https://crbug.com/613003
// We can support intptr_t, uintptr_t, or a smaller common type.
static const bool is_supported =
(IsTypeInRangeForNumericType<intptr_t, T>::value &&
IsTypeInRangeForNumericType<intptr_t, U>::value) ||
(IsTypeInRangeForNumericType<uintptr_t, T>::value &&
IsTypeInRangeForNumericType<uintptr_t, U>::value);
#else
static const bool is_supported = true;
#endif
template <typename V>
__attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
return CheckedMulFastAsmOp<T, U>::is_supported
? CheckedMulFastAsmOp<T, U>::Do(x, y, result)
: !__builtin_mul_overflow(x, y, result);
}
};
template <typename T, typename U>
struct ClampedAddFastOp {
static const bool is_supported = ClampedAddFastAsmOp<T, U>::is_supported;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
return ClampedAddFastAsmOp<T, U>::template Do<V>(x, y);
}
};
template <typename T, typename U>
struct ClampedSubFastOp {
static const bool is_supported = ClampedSubFastAsmOp<T, U>::is_supported;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
return ClampedSubFastAsmOp<T, U>::template Do<V>(x, y);
}
};
template <typename T, typename U>
struct ClampedMulFastOp {
static const bool is_supported = ClampedMulFastAsmOp<T, U>::is_supported;
template <typename V>
__attribute__((always_inline)) static V Do(T x, U y) {
return ClampedMulFastAsmOp<T, U>::template Do<V>(x, y);
}
};
template <typename T>
struct ClampedNegFastOp {
static const bool is_supported = std::is_signed<T>::value;
__attribute__((always_inline)) static T Do(T value) {
// Use this when there is no assembler path available.
if (!ClampedSubFastAsmOp<T, T>::is_supported) {
T result;
return !__builtin_sub_overflow(T(0), value, &result)
? result
: std::numeric_limits<T>::max();
}
// Fallback to the normal subtraction path.
return ClampedSubFastOp<T, T>::template Do<T>(T(0), value);
}
};
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_

Просмотреть файл

@ -0,0 +1,240 @@
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_
#define BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_
#include <stddef.h>
#include <stdint.h>
#include <cassert>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
#ifdef __asmjs__
// Optimized safe math instructions are incompatible with asmjs.
#define BASE_HAS_OPTIMIZED_SAFE_MATH (0)
// Where available use builtin math overflow support on Clang and GCC.
#elif !defined(__native_client__) && \
((defined(__clang__) && \
((__clang_major__ > 3) || \
(__clang_major__ == 3 && __clang_minor__ >= 4))) || \
(defined(__GNUC__) && __GNUC__ >= 5))
#include "base/numerics/safe_math_clang_gcc_impl.h"
#define BASE_HAS_OPTIMIZED_SAFE_MATH (1)
#else
#define BASE_HAS_OPTIMIZED_SAFE_MATH (0)
#endif
namespace base {
namespace internal {
// These are the non-functioning boilerplate implementations of the optimized
// safe math routines.
#if !BASE_HAS_OPTIMIZED_SAFE_MATH
template <typename T, typename U>
struct CheckedAddFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct CheckedSubFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct CheckedMulFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr bool Do(T, U, V*) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
template <typename T, typename U>
struct ClampedAddFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T, typename U>
struct ClampedSubFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T, typename U>
struct ClampedMulFastOp {
static const bool is_supported = false;
template <typename V>
static constexpr V Do(T, U) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<V>();
}
};
template <typename T>
struct ClampedNegFastOp {
static const bool is_supported = false;
static constexpr T Do(T) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<T>();
}
};
#endif // BASE_HAS_OPTIMIZED_SAFE_MATH
#undef BASE_HAS_OPTIMIZED_SAFE_MATH
// This is used for UnsignedAbs, where we need to support floating-point
// template instantiations even though we don't actually support the operations.
// However, there is no corresponding implementation of e.g. SafeUnsignedAbs,
// so the float versions will not compile.
template <typename Numeric,
bool IsInteger = std::is_integral<Numeric>::value,
bool IsFloat = std::is_floating_point<Numeric>::value>
struct UnsignedOrFloatForSize;
template <typename Numeric>
struct UnsignedOrFloatForSize<Numeric, true, false> {
using type = typename std::make_unsigned<Numeric>::type;
};
template <typename Numeric>
struct UnsignedOrFloatForSize<Numeric, false, true> {
using type = Numeric;
};
// Wrap the unary operations to allow SFINAE when instantiating integrals versus
// floating points. These don't perform any overflow checking. Rather, they
// exhibit well-defined overflow semantics and rely on the caller to detect
// if an overflow occured.
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr T NegateWrapper(T value) {
using UnsignedT = typename std::make_unsigned<T>::type;
// This will compile to a NEG on Intel, and is normal negation on ARM.
return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value));
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
constexpr T NegateWrapper(T value) {
return -value;
}
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) {
return ~value;
}
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr T AbsWrapper(T value) {
return static_cast<T>(SafeUnsignedAbs(value));
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
constexpr T AbsWrapper(T value) {
return value < 0 ? -value : value;
}
template <template <typename, typename, typename> class M,
typename L,
typename R>
struct MathWrapper {
using math = M<typename UnderlyingType<L>::type,
typename UnderlyingType<R>::type,
void>;
using type = typename math::result_type;
};
// These variadic templates work out the return types.
// TODO(jschuh): Rip all this out once we have C++14 non-trailing auto support.
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
struct ResultType;
template <template <typename, typename, typename> class M,
typename L,
typename R>
struct ResultType<M, L, R> {
using type = typename MathWrapper<M, L, R>::type;
};
template <template <typename, typename, typename> class M,
typename L,
typename R,
typename... Args>
struct ResultType {
using type =
typename ResultType<M, typename ResultType<M, L, R>::type, Args...>::type;
};
// The following macros are just boilerplate for the standard arithmetic
// operator overloads and variadic function templates. A macro isn't the nicest
// solution, but it beats rewriting these over and over again.
#define BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME) \
template <typename L, typename R, typename... Args> \
constexpr CLASS##Numeric< \
typename ResultType<CLASS##OP_NAME##Op, L, R, Args...>::type> \
CL_ABBR##OP_NAME(const L lhs, const R rhs, const Args... args) { \
return CL_ABBR##MathOp<CLASS##OP_NAME##Op, L, R, Args...>(lhs, rhs, \
args...); \
}
#define BASE_NUMERIC_ARITHMETIC_OPERATORS(CLASS, CL_ABBR, OP_NAME, OP, CMP_OP) \
/* Binary arithmetic operator for all CLASS##Numeric operations. */ \
template <typename L, typename R, \
typename std::enable_if<Is##CLASS##Op<L, R>::value>::type* = \
nullptr> \
constexpr CLASS##Numeric< \
typename MathWrapper<CLASS##OP_NAME##Op, L, R>::type> \
operator OP(const L lhs, const R rhs) { \
return decltype(lhs OP rhs)::template MathOp<CLASS##OP_NAME##Op>(lhs, \
rhs); \
} \
/* Assignment arithmetic operator implementation from CLASS##Numeric. */ \
template <typename L> \
template <typename R> \
constexpr CLASS##Numeric<L>& CLASS##Numeric<L>::operator CMP_OP( \
const R rhs) { \
return MathOp<CLASS##OP_NAME##Op>(rhs); \
} \
/* Variadic arithmetic functions that return CLASS##Numeric. */ \
BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME)
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_

Просмотреть файл

@ -0,0 +1,13 @@
{"Registrations":[
{
"component": {
"type": "git",
"git": {
"repositoryUrl": "https://github.com/chromium/chromium",
"commitHash": "d8710dd959da8e3be56f20af8cc94fbf560fbb6b"
}
}
}
],
"Version": 1
}

Просмотреть файл

@ -86,7 +86,7 @@
</ItemDefinitionGroup> </ItemDefinitionGroup>
<ItemDefinitionGroup> <ItemDefinitionGroup>
<ClCompile> <ClCompile>
<AdditionalIncludeDirectories>$(OpenConsoleDir)\src\inc;$(OpenConsoleDir)\dep;$(OpenConsoleDir)\dep\Console;$(OpenConsoleDir)\dep\Win32K;$(OpenConsoleDir)\dep\gsl\include;$(OpenConsoleDir)\dep\wil\include;%(AdditionalIncludeDirectories);</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(OpenConsoleDir)\src\inc;$(OpenConsoleDir)\dep;$(OpenConsoleDir)\dep\Console;$(OpenConsoleDir)\dep\chromium;$(OpenConsoleDir)\dep\Win32K;$(OpenConsoleDir)\dep\gsl\include;$(OpenConsoleDir)\dep\wil\include;%(AdditionalIncludeDirectories);</AdditionalIncludeDirectories>
</ClCompile> </ClCompile>
<ClCompile> <ClCompile>
<!-- Manually include the generated TerminalCore header's path, because <!-- Manually include the generated TerminalCore header's path, because

Просмотреть файл

@ -1,4 +1,7 @@
#pragma once #pragma once
#define NOMINMAX
#include <windows.h> #include <windows.h>
#include <winrt/Windows.Foundation.h> #include <winrt/Windows.Foundation.h>
#include <winrt/Windows.Foundation.Collections.h> #include <winrt/Windows.Foundation.Collections.h>

Просмотреть файл

@ -82,7 +82,7 @@
<PrecompiledHeaderFile>precomp.h</PrecompiledHeaderFile> <PrecompiledHeaderFile>precomp.h</PrecompiledHeaderFile>
<ProgramDataBaseFileName>$(IntDir)$(TargetName).pdb</ProgramDataBaseFileName> <ProgramDataBaseFileName>$(IntDir)$(TargetName).pdb</ProgramDataBaseFileName>
<DebugInformationFormat>ProgramDatabase</DebugInformationFormat> <DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
<AdditionalIncludeDirectories>$(SolutionDir)\src\inc;$(SolutionDir)\dep;$(SolutionDir)\dep\Console;$(SolutionDir)\dep\Win32K;$(SolutionDir)\dep\gsl\include;$(SolutionDir)\dep\wil\include;%(AdditionalIncludeDirectories);</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(SolutionDir)\src\inc;$(SolutionDir)\dep;$(SolutionDir)\dep\Console;$(SolutionDir)\dep\chromium;$(SolutionDir)\dep\Win32K;$(SolutionDir)\dep\gsl\include;$(SolutionDir)\dep\wil\include;%(AdditionalIncludeDirectories);</AdditionalIncludeDirectories>
<MultiProcessorCompilation>true</MultiProcessorCompilation> <MultiProcessorCompilation>true</MultiProcessorCompilation>
<MinimalRebuild>false</MinimalRebuild> <MinimalRebuild>false</MinimalRebuild>
<RuntimeTypeInfo>false</RuntimeTypeInfo> <RuntimeTypeInfo>false</RuntimeTypeInfo>

Просмотреть файл

@ -68,6 +68,9 @@
// CppCoreCheck // CppCoreCheck
#include <CppCoreCheck/Warnings.h> #include <CppCoreCheck/Warnings.h>
// Chromium Numerics (safe math)
#include <base/numerics/safe_math.h>
// IntSafe // IntSafe
#define ENABLE_INTSAFE_SIGNED_FUNCTIONS #define ENABLE_INTSAFE_SIGNED_FUNCTIONS
#include <intsafe.h> #include <intsafe.h>

Просмотреть файл

@ -4,6 +4,8 @@
#define DEFINE_CONSOLEV2_PROPERTIES #define DEFINE_CONSOLEV2_PROPERTIES
#define INC_OLE2 #define INC_OLE2
#define NOMINMAX
#define WIN32_NO_STATUS #define WIN32_NO_STATUS
#include <windows.h> #include <windows.h>
#undef WIN32_NO_STATUS #undef WIN32_NO_STATUS

Просмотреть файл

@ -21,6 +21,8 @@ Abstract:
#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers #define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers
#endif #endif
#define NOMINMAX
// Windows Header Files: // Windows Header Files:
#include <windows.h> #include <windows.h>

Просмотреть файл

@ -3,6 +3,8 @@
#pragma once #pragma once
#define NOMINMAX
#include <windows.h> #include <windows.h>
#include <shlwapi.h> #include <shlwapi.h>
#include <stdio.h> #include <stdio.h>

Просмотреть файл

@ -14,6 +14,8 @@ Abstract:
#define _CRT_SECURE_NO_WARNINGS 1 #define _CRT_SECURE_NO_WARNINGS 1
#endif #endif
#define NOMINMAX
#include <windows.h> #include <windows.h>
#include <stdlib.h> #include <stdlib.h>

Просмотреть файл

@ -19,6 +19,8 @@ Notes:
--*/ --*/
#define NOMINMAX
#define _OLEAUT32_ #define _OLEAUT32_
#include <windows.h> #include <windows.h>
#include <ole2.h> #include <ole2.h>