torchgeo/tests/datasets/test_spacenet.py

202 строки
7.0 KiB
Python
Исходник Постоянная ссылка Обычный вид История

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import glob
import os
import shutil
from pathlib import Path
from typing import Generator
import pytest
import torch
import torch.nn as nn
from _pytest.fixtures import SubRequest
from _pytest.monkeypatch import MonkeyPatch
from torchgeo.datasets import SpaceNet1, SpaceNet2, SpaceNet4
TEST_DATA_DIR = "tests/data/spacenet"
class Collection:
def __init__(self, collection_id: str) -> None:
self.collection_id = collection_id
def download(self, output_dir: str, **kwargs: str) -> None:
glob_path = os.path.join(TEST_DATA_DIR, "*.tar.gz")
for tarball in glob.iglob(glob_path):
shutil.copy(tarball, output_dir)
def fetch_collection(collection_id: str, **kwargs: str) -> Collection:
return Collection(collection_id)
class TestSpaceNet1:
@pytest.fixture(params=["rgb", "8band"])
def dataset(
self,
request: SubRequest,
monkeypatch: Generator[MonkeyPatch, None, None],
tmp_path: Path,
) -> SpaceNet1:
radiant_mlhub = pytest.importorskip("radiant_mlhub", minversion="0.2.1")
monkeypatch.setattr( # type: ignore[attr-defined]
radiant_mlhub.Collection, "fetch", fetch_collection
)
test_md5 = {"sn1_AOI_1_RIO": "829652022c2df4511ee4ae05bc290250"}
# Refer https://github.com/python/mypy/issues/1032
monkeypatch.setattr( # type: ignore[attr-defined]
SpaceNet1, "collection_md5_dict", test_md5
)
root = str(tmp_path)
transforms = nn.Identity() # type: ignore[attr-defined]
return SpaceNet1(
2021-10-27 00:26:58 +03:00
root, image=request.param, transforms=transforms, download=True, api_key=""
)
def test_getitem(self, dataset: SpaceNet1) -> None:
x = dataset[0]
assert isinstance(x, dict)
assert isinstance(x["image"], torch.Tensor)
assert isinstance(x["mask"], torch.Tensor)
if dataset.image == "rgb":
assert x["image"].shape[0] == 3
else:
assert x["image"].shape[0] == 8
def test_len(self, dataset: SpaceNet1) -> None:
assert len(dataset) == 2
def test_already_downloaded(self, dataset: SpaceNet1) -> None:
SpaceNet1(root=dataset.root, download=True)
def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(RuntimeError, match="Dataset not found"):
SpaceNet1(str(tmp_path))
class TestSpaceNet2:
@pytest.fixture(params=["PAN", "MS", "PS-MS", "PS-RGB"])
def dataset(
self,
request: SubRequest,
monkeypatch: Generator[MonkeyPatch, None, None],
tmp_path: Path,
) -> SpaceNet2:
radiant_mlhub = pytest.importorskip("radiant_mlhub", minversion="0.2.1")
monkeypatch.setattr( # type: ignore[attr-defined]
radiant_mlhub.Collection, "fetch", fetch_collection
)
test_md5 = {
"sn2_AOI_2_Vegas": "b3236f58604a9d746c4e09b3e487e427",
"sn2_AOI_3_Paris": "811e6a26fdeb8be445fed99769fa52c5",
"sn2_AOI_4_Shanghai": "139d1627d184c74426a85ad0222f7355",
"sn2_AOI_5_Khartoum": "435535120414b74165aa87f051c3a2b3",
}
monkeypatch.setattr( # type: ignore[attr-defined]
SpaceNet2, "collection_md5_dict", test_md5
)
root = str(tmp_path)
transforms = nn.Identity() # type: ignore[attr-defined]
return SpaceNet2(
root,
image=request.param,
collections=["sn2_AOI_2_Vegas", "sn2_AOI_5_Khartoum"],
transforms=transforms,
download=True,
api_key="",
)
def test_getitem(self, dataset: SpaceNet2) -> None:
x = dataset[0]
assert isinstance(x, dict)
assert isinstance(x["image"], torch.Tensor)
assert isinstance(x["mask"], torch.Tensor)
if dataset.image == "PS-RGB":
assert x["image"].shape[0] == 3
elif dataset.image in ["MS", "PS-MS"]:
assert x["image"].shape[0] == 8
else:
assert x["image"].shape[0] == 1
# TODO: Change len to 4 when radiantearth/radiant-mlhub#65 is fixed
def test_len(self, dataset: SpaceNet2) -> None:
assert len(dataset) == 5
def test_already_downloaded(self, dataset: SpaceNet2) -> None:
SpaceNet2(root=dataset.root, download=True)
def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(RuntimeError, match="Dataset not found"):
SpaceNet2(str(tmp_path))
def test_collection_checksum(self, dataset: SpaceNet2) -> None:
dataset.collection_md5_dict["sn2_AOI_2_Vegas"] = "randommd5hash123"
with pytest.raises(RuntimeError, match="Collection sn2_AOI_2_Vegas corrupted"):
SpaceNet2(root=dataset.root, download=True, checksum=True)
class TestSpaceNet4:
@pytest.fixture(params=["PAN", "MS", "PS-RGBNIR"])
def dataset(
self,
request: SubRequest,
monkeypatch: Generator[MonkeyPatch, None, None],
tmp_path: Path,
) -> SpaceNet4:
radiant_mlhub = pytest.importorskip("radiant_mlhub", minversion="0.2.1")
monkeypatch.setattr( # type: ignore[attr-defined]
radiant_mlhub.Collection, "fetch", fetch_collection
)
2021-10-27 00:26:58 +03:00
test_md5 = {"sn4_AOI_6_Atlanta": "ea37c2d87e2c3a1d8b2a7c2230080d46"}
test_angles = ["nadir", "off-nadir", "very-off-nadir"]
monkeypatch.setattr( # type: ignore[attr-defined]
SpaceNet4, "collection_md5_dict", test_md5
)
root = str(tmp_path)
transforms = nn.Identity() # type: ignore[attr-defined]
return SpaceNet4(
root,
image=request.param,
angles=test_angles,
transforms=transforms,
download=True,
api_key="",
)
def test_getitem(self, dataset: SpaceNet4) -> None:
# Get image-label pair with empty label to
# enusre coverage
x = dataset[2]
assert isinstance(x, dict)
assert isinstance(x["image"], torch.Tensor)
assert isinstance(x["mask"], torch.Tensor)
if dataset.image == "PS-RGBNIR":
assert x["image"].shape[0] == 4
elif dataset.image == "MS":
assert x["image"].shape[0] == 8
else:
assert x["image"].shape[0] == 1
def test_len(self, dataset: SpaceNet4) -> None:
assert len(dataset) == 4
def test_already_downloaded(self, dataset: SpaceNet4) -> None:
SpaceNet4(root=dataset.root, download=True)
def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(RuntimeError, match="Dataset not found"):
SpaceNet4(str(tmp_path))
def test_collection_checksum(self, dataset: SpaceNet4) -> None:
dataset.collection_md5_dict["sn4_AOI_6_Atlanta"] = "randommd5hash123"
with pytest.raises(
RuntimeError, match="Collection sn4_AOI_6_Atlanta corrupted"
):
SpaceNet4(root=dataset.root, download=True, checksum=True)