зеркало из https://github.com/microsoft/torchgeo.git
Bump lightning[pytorch-extra] from 2.0.9.post0 to 2.1.0 in /requirements (#1662)
* Bump lightning[pytorch-extra] from 2.0.9.post0 to 2.1.0 in /requirements Bumps [lightning[pytorch-extra]](https://github.com/Lightning-AI/lightning) from 2.0.9.post0 to 2.1.0. - [Release notes](https://github.com/Lightning-AI/lightning/releases) - [Commits](https://github.com/Lightning-AI/lightning/compare/2.0.9.post0...2.1.0) --- updated-dependencies: - dependency-name: lightning[pytorch-extra] dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] <support@github.com> * Remove type ignores * Capture more warnings --------- Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Caleb Robinson <calebrob6@gmail.com> Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This commit is contained in:
Родитель
e0917cafae
Коммит
01de750885
|
@ -246,7 +246,8 @@ filterwarnings = [
|
|||
|
||||
# Expected warnings
|
||||
# Lightning warns us about using num_workers=0, but it's faster on macOS
|
||||
"ignore:The dataloader, .*, does not have many workers which may be a bottleneck:UserWarning",
|
||||
"ignore:The .*dataloader.* does not have many workers which may be a bottleneck:UserWarning:lightning",
|
||||
"ignore:The .*dataloader.* does not have many workers which may be a bottleneck:lightning.fabric.utilities.warnings.PossibleUserWarning:lightning",
|
||||
# Lightning warns us about using the CPU when GPU/MPS is available
|
||||
"ignore:GPU available but not used.:UserWarning",
|
||||
"ignore:MPS available but not used.:UserWarning",
|
||||
|
|
|
@ -164,7 +164,7 @@ class ClassificationTask(BaseTask):
|
|||
loss: Tensor = self.criterion(y_hat, y)
|
||||
self.log("train_loss", loss)
|
||||
self.train_metrics(y_hat_hard, y)
|
||||
self.log_dict(self.train_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.train_metrics)
|
||||
|
||||
return loss
|
||||
|
||||
|
@ -185,7 +185,7 @@ class ClassificationTask(BaseTask):
|
|||
loss = self.criterion(y_hat, y)
|
||||
self.log("val_loss", loss)
|
||||
self.val_metrics(y_hat_hard, y)
|
||||
self.log_dict(self.val_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.val_metrics)
|
||||
|
||||
if (
|
||||
batch_idx < 10
|
||||
|
@ -226,7 +226,7 @@ class ClassificationTask(BaseTask):
|
|||
loss = self.criterion(y_hat, y)
|
||||
self.log("test_loss", loss)
|
||||
self.test_metrics(y_hat_hard, y)
|
||||
self.log_dict(self.test_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.test_metrics)
|
||||
|
||||
def predict_step(
|
||||
self, batch: Any, batch_idx: int, dataloader_idx: int = 0
|
||||
|
@ -288,7 +288,7 @@ class MultiLabelClassificationTask(ClassificationTask):
|
|||
loss: Tensor = self.criterion(y_hat, y.to(torch.float))
|
||||
self.log("train_loss", loss)
|
||||
self.train_metrics(y_hat_hard, y)
|
||||
self.log_dict(self.train_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.train_metrics)
|
||||
|
||||
return loss
|
||||
|
||||
|
@ -309,7 +309,7 @@ class MultiLabelClassificationTask(ClassificationTask):
|
|||
loss = self.criterion(y_hat, y.to(torch.float))
|
||||
self.log("val_loss", loss)
|
||||
self.val_metrics(y_hat_hard, y)
|
||||
self.log_dict(self.val_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.val_metrics)
|
||||
|
||||
if (
|
||||
batch_idx < 10
|
||||
|
@ -349,7 +349,7 @@ class MultiLabelClassificationTask(ClassificationTask):
|
|||
loss = self.criterion(y_hat, y.to(torch.float))
|
||||
self.log("test_loss", loss)
|
||||
self.test_metrics(y_hat_hard, y)
|
||||
self.log_dict(self.test_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.test_metrics)
|
||||
|
||||
def predict_step(
|
||||
self, batch: Any, batch_idx: int, dataloader_idx: int = 0
|
||||
|
|
|
@ -157,7 +157,7 @@ class RegressionTask(BaseTask):
|
|||
loss: Tensor = self.criterion(y_hat, y)
|
||||
self.log("train_loss", loss)
|
||||
self.train_metrics(y_hat, y)
|
||||
self.log_dict(self.train_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.train_metrics)
|
||||
|
||||
return loss
|
||||
|
||||
|
@ -180,7 +180,7 @@ class RegressionTask(BaseTask):
|
|||
loss = self.criterion(y_hat, y)
|
||||
self.log("val_loss", loss)
|
||||
self.val_metrics(y_hat, y)
|
||||
self.log_dict(self.val_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.val_metrics)
|
||||
|
||||
if (
|
||||
batch_idx < 10
|
||||
|
@ -226,7 +226,7 @@ class RegressionTask(BaseTask):
|
|||
loss = self.criterion(y_hat, y)
|
||||
self.log("test_loss", loss)
|
||||
self.test_metrics(y_hat, y)
|
||||
self.log_dict(self.test_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.test_metrics)
|
||||
|
||||
def predict_step(
|
||||
self, batch: Any, batch_idx: int, dataloader_idx: int = 0
|
||||
|
|
|
@ -220,7 +220,7 @@ class SemanticSegmentationTask(BaseTask):
|
|||
loss: Tensor = self.criterion(y_hat, y)
|
||||
self.log("train_loss", loss)
|
||||
self.train_metrics(y_hat_hard, y)
|
||||
self.log_dict(self.train_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.train_metrics)
|
||||
return loss
|
||||
|
||||
def validation_step(
|
||||
|
@ -240,7 +240,7 @@ class SemanticSegmentationTask(BaseTask):
|
|||
loss = self.criterion(y_hat, y)
|
||||
self.log("val_loss", loss)
|
||||
self.val_metrics(y_hat_hard, y)
|
||||
self.log_dict(self.val_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.val_metrics)
|
||||
|
||||
if (
|
||||
batch_idx < 10
|
||||
|
@ -281,7 +281,7 @@ class SemanticSegmentationTask(BaseTask):
|
|||
loss = self.criterion(y_hat, y)
|
||||
self.log("test_loss", loss)
|
||||
self.test_metrics(y_hat_hard, y)
|
||||
self.log_dict(self.test_metrics) # type: ignore[arg-type]
|
||||
self.log_dict(self.test_metrics)
|
||||
|
||||
def predict_step(
|
||||
self, batch: Any, batch_idx: int, dataloader_idx: int = 0
|
||||
|
|
Загрузка…
Ссылка в новой задаче