зеркало из https://github.com/microsoft/torchgeo.git
format and removed empty masks from file list
This commit is contained in:
Родитель
c93b4ba21b
Коммит
19c06cebfe
|
@ -34,22 +34,22 @@ class GID15(VisionDataset):
|
|||
* colormapped masks are 3 channel tifs
|
||||
|
||||
Dataset classes:
|
||||
1. background
|
||||
2. industrial_land
|
||||
3. urban_residential
|
||||
4. rural_residential
|
||||
5. traffic_land
|
||||
6. paddy_field
|
||||
7. irrigated_land
|
||||
8. dry_cropland
|
||||
9. garden_plot
|
||||
10. arbor_woodland
|
||||
11. shrub_land
|
||||
12. natural_grassland
|
||||
13. artificial_grassland
|
||||
14. river
|
||||
15. lake
|
||||
16. pond
|
||||
1. background
|
||||
2. industrial_land
|
||||
3. urban_residential
|
||||
4. rural_residential
|
||||
5. traffic_land
|
||||
6. paddy_field
|
||||
7. irrigated_land
|
||||
8. dry_cropland
|
||||
9. garden_plot
|
||||
10. arbor_woodland
|
||||
11. shrub_land
|
||||
12. natural_grassland
|
||||
13. artificial_grassland
|
||||
14. river
|
||||
15. lake
|
||||
16. pond
|
||||
|
||||
If you use this dataset in your research, please cite the following paper:
|
||||
* https://arxiv.org/abs/1807.05713
|
||||
|
@ -159,7 +159,7 @@ class GID15(VisionDataset):
|
|||
split: subset of dataset, one of [train, val, test]
|
||||
|
||||
Returns:
|
||||
list of dicts containing paths for each pair of image1, image2, mask
|
||||
list of dicts containing paths for each pair of image, mask
|
||||
"""
|
||||
image_root = os.path.join(root, "GID", "img_dir")
|
||||
images = glob.glob(os.path.join(image_root, split, "*.tif"))
|
||||
|
@ -169,10 +169,10 @@ class GID15(VisionDataset):
|
|||
image.replace("img_dir", "ann_dir").replace(".tif", "_15label.png")
|
||||
for image in images
|
||||
]
|
||||
files = [dict(image=image, mask=mask) for image, mask in zip(images, masks)]
|
||||
else:
|
||||
masks = [""] * len(images)
|
||||
files = [dict(image=image) for image in images]
|
||||
|
||||
files = [dict(image=image, mask=mask) for image, mask in zip(images, masks)]
|
||||
return files
|
||||
|
||||
def _load_image(self, path: str) -> Tensor:
|
||||
|
|
Загрузка…
Ссылка в новой задаче