зеркало из https://github.com/microsoft/torchgeo.git
NASA Marine Debris dataset (#269)
This commit is contained in:
Родитель
9a317be971
Коммит
1f249b81c6
|
@ -140,6 +140,12 @@ LoveDA (Land-cOVEr Domain Adaptive semantic segmentation)
|
|||
.. autoclass:: LoveDA
|
||||
.. autoclass:: LoveDADataModule
|
||||
|
||||
NASA Marine Debris
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. autoclass:: NASAMarineDebris
|
||||
.. autoclass:: NASAMarineDebrisDataModule
|
||||
|
||||
OSCD (Onera Satellite Change Detection)
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
|
|
Двоичный файл не отображается.
Двоичный файл не отображается.
Двоичный файл не отображается.
Двоичный файл не отображается.
Двоичный файл не отображается.
Двоичный файл не отображается.
Двоичный файл не отображается.
Двоичный файл не отображается.
Двоичный файл не отображается.
Двоичный файл не отображается.
|
@ -0,0 +1,112 @@
|
|||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
import glob
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Generator
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from _pytest.monkeypatch import MonkeyPatch
|
||||
|
||||
from torchgeo.datasets import NASAMarineDebris, NASAMarineDebrisDataModule
|
||||
|
||||
|
||||
class Dataset:
|
||||
def download(self, output_dir: str, **kwargs: str) -> None:
|
||||
glob_path = os.path.join("tests", "data", "nasa_marine_debris", "*.tar.gz")
|
||||
for tarball in glob.iglob(glob_path):
|
||||
shutil.copy(tarball, output_dir)
|
||||
|
||||
|
||||
def fetch(dataset_id: str, **kwargs: str) -> Dataset:
|
||||
return Dataset()
|
||||
|
||||
|
||||
class TestNASAMarineDebris:
|
||||
@pytest.fixture()
|
||||
def dataset(
|
||||
self, monkeypatch: Generator[MonkeyPatch, None, None], tmp_path: Path
|
||||
) -> NASAMarineDebris:
|
||||
radiant_mlhub = pytest.importorskip("radiant_mlhub", minversion="0.2.1")
|
||||
monkeypatch.setattr( # type: ignore[attr-defined]
|
||||
radiant_mlhub.Dataset, "fetch", fetch
|
||||
)
|
||||
md5s = ["fe8698d1e68b3f24f0b86b04419a797d", "d8084f5a72778349e07ac90ec1e1d990"]
|
||||
monkeypatch.setattr( # type: ignore[attr-defined]
|
||||
NASAMarineDebris, "md5s", md5s
|
||||
)
|
||||
root = str(tmp_path)
|
||||
transforms = nn.Identity() # type: ignore[attr-defined]
|
||||
return NASAMarineDebris(root, transforms, download=True, checksum=True)
|
||||
|
||||
def test_getitem(self, dataset: NASAMarineDebris) -> None:
|
||||
x = dataset[0]
|
||||
assert isinstance(x, dict)
|
||||
assert isinstance(x["image"], torch.Tensor)
|
||||
assert isinstance(x["boxes"], torch.Tensor)
|
||||
assert x["image"].shape[0] == 3
|
||||
assert x["boxes"].shape[-1] == 4
|
||||
|
||||
def test_len(self, dataset: NASAMarineDebris) -> None:
|
||||
assert len(dataset) == 4
|
||||
|
||||
def test_already_downloaded(
|
||||
self, dataset: NASAMarineDebris, tmp_path: Path
|
||||
) -> None:
|
||||
NASAMarineDebris(root=str(tmp_path), download=True)
|
||||
|
||||
def test_already_downloaded_not_extracted(
|
||||
self, dataset: NASAMarineDebris, tmp_path: Path
|
||||
) -> None:
|
||||
shutil.rmtree(dataset.root)
|
||||
os.makedirs(str(tmp_path), exist_ok=True)
|
||||
Dataset().download(output_dir=str(tmp_path))
|
||||
print(os.listdir(str(tmp_path)))
|
||||
NASAMarineDebris(root=str(tmp_path), download=False)
|
||||
|
||||
def test_not_downloaded(self, tmp_path: Path) -> None:
|
||||
err = "Dataset not found in `root` directory and `download=False`, "
|
||||
"either specify a different `root` directory or use `download=True` "
|
||||
"to automaticaly download the dataset."
|
||||
with pytest.raises(RuntimeError, match=err):
|
||||
NASAMarineDebris(str(tmp_path))
|
||||
|
||||
def test_plot(self, dataset: NASAMarineDebris) -> None:
|
||||
x = dataset[0].copy()
|
||||
dataset.plot(x, suptitle="Test")
|
||||
plt.close()
|
||||
dataset.plot(x, show_titles=False)
|
||||
plt.close()
|
||||
x["prediction_boxes"] = x["boxes"].clone()
|
||||
dataset.plot(x)
|
||||
plt.close()
|
||||
|
||||
|
||||
class TestNASAMarineDebrisDataModule:
|
||||
@pytest.fixture(scope="class")
|
||||
def datamodule(self) -> NASAMarineDebrisDataModule:
|
||||
root = os.path.join("tests", "data", "nasa_marine_debris")
|
||||
batch_size = 2
|
||||
num_workers = 0
|
||||
val_split_pct = 0.3
|
||||
test_split_pct = 0.3
|
||||
dm = NASAMarineDebrisDataModule(
|
||||
root, batch_size, num_workers, val_split_pct, test_split_pct
|
||||
)
|
||||
dm.prepare_data()
|
||||
dm.setup()
|
||||
return dm
|
||||
|
||||
def test_train_dataloader(self, datamodule: NASAMarineDebrisDataModule) -> None:
|
||||
next(iter(datamodule.train_dataloader()))
|
||||
|
||||
def test_val_dataloader(self, datamodule: NASAMarineDebrisDataModule) -> None:
|
||||
next(iter(datamodule.val_dataloader()))
|
||||
|
||||
def test_test_dataloader(self, datamodule: NASAMarineDebrisDataModule) -> None:
|
||||
next(iter(datamodule.test_dataloader()))
|
|
@ -55,6 +55,7 @@ from .landsat import (
|
|||
from .levircd import LEVIRCDPlus
|
||||
from .loveda import LoveDA, LoveDADataModule
|
||||
from .naip import NAIP, NAIPChesapeakeDataModule
|
||||
from .nasa_marine_debris import NASAMarineDebris, NASAMarineDebrisDataModule
|
||||
from .nwpu import VHR10
|
||||
from .oscd import OSCD, OSCDDataModule
|
||||
from .patternnet import PatternNet
|
||||
|
@ -123,6 +124,8 @@ __all__ = (
|
|||
"LEVIRCDPlus",
|
||||
"LoveDA",
|
||||
"LoveDADataModule",
|
||||
"NASAMarineDebris",
|
||||
"NASAMarineDebrisDataModule",
|
||||
"OSCD",
|
||||
"OSCDDataModule",
|
||||
"PatternNet",
|
||||
|
|
|
@ -0,0 +1,387 @@
|
|||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License.
|
||||
|
||||
"""NASA Marine Debris dataset."""
|
||||
|
||||
import os
|
||||
from typing import Any, Callable, Dict, List, Optional
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pytorch_lightning as pl
|
||||
import rasterio
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision.transforms import Compose
|
||||
from torchvision.utils import draw_bounding_boxes
|
||||
|
||||
from .geo import VisionDataset
|
||||
from .utils import dataset_split, download_radiant_mlhub_dataset, extract_archive
|
||||
|
||||
# https://github.com/pytorch/pytorch/issues/60979
|
||||
# https://github.com/pytorch/pytorch/pull/61045
|
||||
DataLoader.__module__ = "torch.utils.data"
|
||||
|
||||
|
||||
def collate_fn(batch: List[Dict[str, Tensor]]) -> Dict[str, Any]:
|
||||
"""Custom object detection collate fn to handle variable boxes.
|
||||
|
||||
Args:
|
||||
batch: list of sample dicts return by dataset
|
||||
|
||||
Returns:
|
||||
batch dict output
|
||||
"""
|
||||
output: Dict[str, Any] = {}
|
||||
output["image"] = torch.stack([sample["image"] for sample in batch])
|
||||
output["boxes"] = [sample["boxes"] for sample in batch]
|
||||
return output
|
||||
|
||||
|
||||
class NASAMarineDebris(VisionDataset):
|
||||
"""NASA Marine Debris dataset.
|
||||
|
||||
The `NASA Marine Debris <https://mlhub.earth/data/nasa_marine_debris>`_
|
||||
dataset is a dataset for detection of floating marine debris in satellite imagery.
|
||||
|
||||
Dataset features:
|
||||
|
||||
* 707 patches with 3 m per pixel resolution (256x256 px)
|
||||
* three spectral bands - RGB
|
||||
* 1 object class: marine_debris
|
||||
* images taken by Planet Labs PlanetScope satellites
|
||||
* imagery taken from 2016-2019 from coasts of Greece, Honduras, and Ghana
|
||||
|
||||
Dataset format:
|
||||
|
||||
* images are three-channel geotiffs in uint8 format
|
||||
* labels are numpy files (.npy) containing bounding box (xyxy) coordinates
|
||||
* additional: images in jpg format and labels in geojson format
|
||||
|
||||
If you use this dataset in your research, please cite the following paper:
|
||||
|
||||
* https://doi.org/10.34911/rdnt.9r6ekg
|
||||
|
||||
.. note::
|
||||
|
||||
This dataset requires the following additional library to be installed:
|
||||
|
||||
* `radiant-mlhub <https://pypi.org/project/radiant-mlhub/>`_ to download the
|
||||
imagery and labels from the Radiant Earth MLHub
|
||||
|
||||
.. versionadded: 0.2
|
||||
"""
|
||||
|
||||
dataset_id = "nasa_marine_debris"
|
||||
directories = ["nasa_marine_debris_source", "nasa_marine_debris_labels"]
|
||||
filenames = ["nasa_marine_debris_source.tar.gz", "nasa_marine_debris_labels.tar.gz"]
|
||||
md5s = ["fe8698d1e68b3f24f0b86b04419a797d", "d8084f5a72778349e07ac90ec1e1d990"]
|
||||
class_label = "marine_debris"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
root: str = "data",
|
||||
transforms: Optional[Callable[[Dict[str, Tensor]], Dict[str, Tensor]]] = None,
|
||||
download: bool = False,
|
||||
api_key: Optional[str] = None,
|
||||
checksum: bool = False,
|
||||
verbose: bool = False,
|
||||
) -> None:
|
||||
"""Initialize a new NASA Marine Debris Dataset instance.
|
||||
|
||||
Args:
|
||||
root: root directory where dataset can be found
|
||||
transforms: a function/transform that takes input sample and its target as
|
||||
entry and returns a transformed version
|
||||
download: if True, download dataset and store it in the root directory
|
||||
api_key: a RadiantEarth MLHub API key to use for downloading the dataset
|
||||
checksum: if True, check the MD5 of the downloaded files (may be slow)
|
||||
verbose: if True, print messages when new tiles are loaded
|
||||
"""
|
||||
self.root = root
|
||||
self.transforms = transforms
|
||||
self.download = download
|
||||
self.api_key = api_key
|
||||
self.checksum = checksum
|
||||
self.verbose = verbose
|
||||
self._verify()
|
||||
self.files = self._load_files()
|
||||
|
||||
def __getitem__(self, index: int) -> Dict[str, Tensor]:
|
||||
"""Return an index within the dataset.
|
||||
|
||||
Args:
|
||||
index: index to return
|
||||
|
||||
Returns:
|
||||
data and labels at that index
|
||||
"""
|
||||
image = self._load_image(self.files[index]["image"])
|
||||
boxes = self._load_target(self.files[index]["target"])
|
||||
sample = {"image": image, "boxes": boxes}
|
||||
|
||||
if self.transforms is not None:
|
||||
sample = self.transforms(sample)
|
||||
|
||||
return sample
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Return the number of data points in the dataset.
|
||||
|
||||
Returns:
|
||||
length of the dataset
|
||||
"""
|
||||
return len(self.files)
|
||||
|
||||
def _load_image(self, path: str) -> Tensor:
|
||||
"""Load a single image.
|
||||
|
||||
Args:
|
||||
path: path to the image
|
||||
|
||||
Returns:
|
||||
the image
|
||||
"""
|
||||
with rasterio.open(path) as f:
|
||||
array = f.read()
|
||||
tensor: Tensor = torch.from_numpy(array) # type: ignore[attr-defined]
|
||||
return tensor
|
||||
|
||||
def _load_target(self, path: str) -> Tensor:
|
||||
"""Load the target bounding boxes for a single image.
|
||||
|
||||
Args:
|
||||
path: path to the labels
|
||||
|
||||
Returns:
|
||||
the target boxes
|
||||
"""
|
||||
array = np.load(path) # type: ignore[no-untyped-call]
|
||||
# boxes contain unecessary value of 1 after xyxy coords
|
||||
array = array[:, :4]
|
||||
tensor: Tensor = torch.from_numpy(array) # type: ignore[attr-defined]
|
||||
return tensor
|
||||
|
||||
def _load_files(self) -> List[Dict[str, str]]:
|
||||
"""Load a image and label files.
|
||||
|
||||
Returns:
|
||||
list of dicts containing image and label files
|
||||
"""
|
||||
image_root = os.path.join(self.root, self.directories[0])
|
||||
target_root = os.path.join(self.root, self.directories[1])
|
||||
image_folders = sorted(
|
||||
[f for f in os.listdir(image_root) if not f.endswith("json")]
|
||||
)
|
||||
|
||||
files = []
|
||||
for folder in image_folders:
|
||||
files.append(
|
||||
{
|
||||
"image": os.path.join(image_root, folder, "image_geotiff.tif"),
|
||||
"target": os.path.join(
|
||||
target_root,
|
||||
folder.replace("source", "labels"),
|
||||
"pixel_bounds.npy",
|
||||
),
|
||||
}
|
||||
)
|
||||
return files
|
||||
|
||||
def _verify(self) -> None:
|
||||
"""Verify the integrity of the dataset.
|
||||
|
||||
Raises:
|
||||
RuntimeError: if ``download=False`` but dataset is missing or checksum fails
|
||||
"""
|
||||
# Check if the files already exist
|
||||
exists = [
|
||||
os.path.exists(os.path.join(self.root, directory))
|
||||
for directory in self.directories
|
||||
]
|
||||
if all(exists):
|
||||
return
|
||||
|
||||
# Check if zip file already exists (if so then extract)
|
||||
exists = []
|
||||
for filename in self.filenames:
|
||||
filepath = os.path.join(self.root, filename)
|
||||
if os.path.exists(filepath):
|
||||
exists.append(True)
|
||||
extract_archive(filepath)
|
||||
else:
|
||||
exists.append(False)
|
||||
|
||||
if all(exists):
|
||||
return
|
||||
|
||||
# Check if the user requested to download the dataset
|
||||
if not self.download:
|
||||
raise RuntimeError(
|
||||
"Dataset not found in `root` directory and `download=False`, "
|
||||
"either specify a different `root` directory or use `download=True` "
|
||||
"to automaticaly download the dataset."
|
||||
)
|
||||
|
||||
# TODO: need a checksum check in here post downloading
|
||||
# Download and extract the dataset
|
||||
download_radiant_mlhub_dataset(self.dataset_id, self.root, self.api_key)
|
||||
for filename in self.filenames:
|
||||
filepath = os.path.join(self.root, filename)
|
||||
extract_archive(filepath)
|
||||
|
||||
def plot(
|
||||
self,
|
||||
sample: Dict[str, Tensor],
|
||||
show_titles: bool = True,
|
||||
suptitle: Optional[str] = None,
|
||||
) -> plt.Figure:
|
||||
"""Plot a sample from the dataset.
|
||||
|
||||
Args:
|
||||
sample: a sample returned by :meth:`__getitem__`
|
||||
show_titles: flag indicating whether to show titles above each panel
|
||||
suptitle: optional string to use as a suptitle
|
||||
|
||||
Returns:
|
||||
a matplotlib Figure with the rendered sample
|
||||
"""
|
||||
ncols = 1
|
||||
|
||||
image = draw_bounding_boxes(image=sample["image"], boxes=sample["boxes"])
|
||||
image = image.permute((1, 2, 0)).numpy()
|
||||
|
||||
if "prediction_boxes" in sample:
|
||||
ncols += 1
|
||||
preds = draw_bounding_boxes(
|
||||
image=sample["image"], boxes=sample["prediction_boxes"]
|
||||
)
|
||||
preds = preds.permute((1, 2, 0)).numpy()
|
||||
|
||||
fig, axs = plt.subplots(ncols=ncols, figsize=(ncols * 10, 10))
|
||||
if ncols < 2:
|
||||
axs.imshow(image)
|
||||
axs.axis("off")
|
||||
if show_titles:
|
||||
axs.set_title("Ground Truth")
|
||||
else:
|
||||
axs[0].imshow(image)
|
||||
axs[0].axis("off")
|
||||
axs[1].imshow(preds)
|
||||
axs[1].axis("off")
|
||||
|
||||
if show_titles:
|
||||
axs[0].set_title("Ground Truth")
|
||||
axs[1].set_title("Predictions")
|
||||
|
||||
if suptitle is not None:
|
||||
plt.suptitle(suptitle)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
class NASAMarineDebrisDataModule(pl.LightningDataModule):
|
||||
"""LightningDataModule implementation for the NASA Marine Debris dataset."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
root_dir: str,
|
||||
batch_size: int = 64,
|
||||
num_workers: int = 0,
|
||||
val_split_pct: float = 0.2,
|
||||
test_split_pct: float = 0.2,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Initialize a LightningDataModule for NASA Marine Debris based DataLoaders.
|
||||
|
||||
Args:
|
||||
root_dir: The ``root`` argument to pass to the Dataset class
|
||||
batch_size: The batch size to use in all created DataLoaders
|
||||
num_workers: The number of workers to use in all created DataLoaders
|
||||
val_split_pct: What percentage of the dataset to use as a validation set
|
||||
test_split_pct: What percentage of the dataset to use as a test set
|
||||
"""
|
||||
super().__init__() # type: ignore[no-untyped-call]
|
||||
self.root_dir = root_dir
|
||||
self.batch_size = batch_size
|
||||
self.num_workers = num_workers
|
||||
self.val_split_pct = val_split_pct
|
||||
self.test_split_pct = test_split_pct
|
||||
|
||||
def preprocess(self, sample: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Transform a single sample from the Dataset.
|
||||
|
||||
Args:
|
||||
sample: input image dictionary
|
||||
|
||||
Returns:
|
||||
preprocessed sample
|
||||
"""
|
||||
sample["image"] = sample["image"].float()
|
||||
sample["image"] /= 255.0
|
||||
return sample
|
||||
|
||||
def prepare_data(self) -> None:
|
||||
"""Make sure that the dataset is downloaded.
|
||||
|
||||
This method is only called once per run.
|
||||
"""
|
||||
NASAMarineDebris(self.root_dir, checksum=False)
|
||||
|
||||
def setup(self, stage: Optional[str] = None) -> None:
|
||||
"""Initialize the main ``Dataset`` objects.
|
||||
|
||||
This method is called once per GPU per run.
|
||||
|
||||
Args:
|
||||
stage: stage to set up
|
||||
"""
|
||||
transforms = Compose([self.preprocess])
|
||||
|
||||
dataset = NASAMarineDebris(self.root_dir, transforms=transforms)
|
||||
self.train_dataset, self.val_dataset, self.test_dataset = dataset_split(
|
||||
dataset, val_pct=self.val_split_pct, test_pct=self.test_split_pct
|
||||
)
|
||||
|
||||
def train_dataloader(self) -> DataLoader[Any]:
|
||||
"""Return a DataLoader for training.
|
||||
|
||||
Returns:
|
||||
training data loader
|
||||
"""
|
||||
return DataLoader(
|
||||
self.train_dataset,
|
||||
batch_size=self.batch_size,
|
||||
num_workers=self.num_workers,
|
||||
shuffle=True,
|
||||
collate_fn=collate_fn,
|
||||
)
|
||||
|
||||
def val_dataloader(self) -> DataLoader[Any]:
|
||||
"""Return a DataLoader for validation.
|
||||
|
||||
Returns:
|
||||
validation data loader
|
||||
"""
|
||||
return DataLoader(
|
||||
self.val_dataset,
|
||||
batch_size=self.batch_size,
|
||||
num_workers=self.num_workers,
|
||||
shuffle=False,
|
||||
collate_fn=collate_fn,
|
||||
)
|
||||
|
||||
def test_dataloader(self) -> DataLoader[Any]:
|
||||
"""Return a DataLoader for testing.
|
||||
|
||||
Returns:
|
||||
testing data loader
|
||||
"""
|
||||
return DataLoader(
|
||||
self.test_dataset,
|
||||
batch_size=self.batch_size,
|
||||
num_workers=self.num_workers,
|
||||
shuffle=False,
|
||||
collate_fn=collate_fn,
|
||||
)
|
Загрузка…
Ссылка в новой задаче