Bump ruff from 0.4.4 to 0.4.5 in /requirements (#2080)

* Bump ruff from 0.4.4 to 0.4.5 in /requirements

Bumps [ruff](https://github.com/astral-sh/ruff) from 0.4.4 to 0.4.5.
- [Release notes](https://github.com/astral-sh/ruff/releases)
- [Changelog](https://github.com/astral-sh/ruff/blob/main/CHANGELOG.md)
- [Commits](https://github.com/astral-sh/ruff/compare/v0.4.4...v0.4.5)

---
updated-dependencies:
- dependency-name: ruff
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>

* min version of numpy now supports type hints

* pre-commit: update ruff

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This commit is contained in:
dependabot[bot] 2024-05-23 21:35:27 +00:00 коммит произвёл GitHub
Родитель 2aecee9c7a
Коммит 5cfbd6512d
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
35 изменённых файлов: 52 добавлений и 52 удалений

Просмотреть файл

@ -1,6 +1,6 @@
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.3.7
rev: v0.4.5
hooks:
- id: ruff
types_or:

Просмотреть файл

@ -29,7 +29,7 @@ def retrieve_mask_chip(
mask array
"""
out_shape = (1, *img_src.shape)
mask_chip: 'np.typing.NDArray[np.uint8]' = mask_src.read(
mask_chip: np.typing.NDArray[np.uint8] = mask_src.read(
out_shape=out_shape, window=from_bounds(*img_src.bounds, mask_src.transform)
)

Просмотреть файл

@ -1,3 +1,3 @@
# style
mypy==1.10.0
ruff==0.4.4
ruff==0.4.5

Просмотреть файл

@ -561,7 +561,7 @@ def test_nonexisting_directory(tmp_path: Path) -> None:
def test_percentile_normalization() -> None:
img: 'np.typing.NDArray[np.int_]' = np.array([[1, 2], [98, 100]])
img: np.typing.NDArray[np.int_] = np.array([[1, 2], [98, 100]])
img = percentile_normalization(img, 2, 98)
assert img.min() == 0
@ -573,7 +573,7 @@ def test_percentile_normalization() -> None:
[np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32, np.int64],
)
def test_array_to_tensor(array_dtype: 'np.typing.DTypeLike') -> None:
array: 'np.typing.NDArray[Any]' = np.zeros((2,), dtype=array_dtype)
array: np.typing.NDArray[Any] = np.zeros((2,), dtype=array_dtype)
array[0] = np.iinfo(array.dtype).min
array[1] = np.iinfo(array.dtype).max
tensor = array_to_tensor(array)

Просмотреть файл

@ -179,7 +179,7 @@ class ADVANCE(NonGeoDataset):
the image
"""
with Image.open(path) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))

Просмотреть файл

@ -403,7 +403,7 @@ class BigEarthNet(NonGeoDataset):
resampling=Resampling.bilinear,
)
images.append(array)
arrays: 'np.typing.NDArray[np.int_]' = np.stack(images, axis=0)
arrays: np.typing.NDArray[np.int_] = np.stack(images, axis=0)
tensor = torch.from_numpy(arrays).float()
return tensor

Просмотреть файл

@ -196,7 +196,7 @@ class BioMassters(NonGeoDataset):
target mask
"""
with rasterio.open(os.path.join(self.root, 'train_agbm', filename), 'r') as src:
arr: 'np.typing.NDArray[np.float_]' = src.read()
arr: np.typing.NDArray[np.float_] = src.read()
target = torch.from_numpy(arr).float()
return target

Просмотреть файл

@ -183,7 +183,7 @@ class CloudCoverDetection(NonGeoDataset):
with rasterio.open(path) as image_data:
image_array = image_data.read(1).astype(np.int32)
images.append(image_array)
image_stack: 'np.typing.NDArray[np.int_]' = np.stack(images, axis=0)
image_stack: np.typing.NDArray[np.int_] = np.stack(images, axis=0)
image_tensor = torch.from_numpy(image_stack)
return image_tensor
@ -200,7 +200,7 @@ class CloudCoverDetection(NonGeoDataset):
with rasterio.open(label_asset_path) as target_data:
target_img = target_data.read(1).astype(np.int32)
target_array: 'np.typing.NDArray[np.int_]' = np.array(target_img)
target_array: np.typing.NDArray[np.int_] = np.array(target_img)
target_tensor = torch.from_numpy(target_array)
return target_tensor

Просмотреть файл

@ -145,7 +145,7 @@ class COWC(NonGeoDataset, abc.ABC):
"""
filename = os.path.join(self.root, self.images[index])
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img)
array: np.typing.NDArray[np.int_] = np.array(img)
tensor = torch.from_numpy(array).float()
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))

Просмотреть файл

@ -235,7 +235,7 @@ class CV4AKenyaCropType(NonGeoDataset):
)
with Image.open(os.path.join(directory, 'labels.tif')) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img)
array: np.typing.NDArray[np.int_] = np.array(img)
labels = torch.from_numpy(array)
with Image.open(os.path.join(directory, 'field_ids.tif')) as img:
@ -332,7 +332,7 @@ class CV4AKenyaCropType(NonGeoDataset):
f'{band_name}.tif',
)
with Image.open(filepath) as band_img:
array: 'np.typing.NDArray[np.int_]' = np.array(band_img)
array: np.typing.NDArray[np.int_] = np.array(band_img)
img[band_index] = torch.from_numpy(array)
return img

Просмотреть файл

@ -159,7 +159,7 @@ class TropicalCyclone(NonGeoDataset):
except AttributeError:
resample = Image.BILINEAR # type: ignore[attr-defined]
img = img.resize(size=(self.size, self.size), resample=resample)
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor = torch.from_numpy(array)
tensor = tensor.permute((2, 0, 1)).float()
return tensor

Просмотреть файл

@ -184,7 +184,7 @@ class DeepGlobeLandCover(NonGeoDataset):
path = self.image_fns[index]
with Image.open(path) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img)
array: np.typing.NDArray[np.int_] = np.array(img)
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1)).to(torch.float32)
@ -201,7 +201,7 @@ class DeepGlobeLandCover(NonGeoDataset):
"""
path = self.mask_fns[index]
with Image.open(path) as img:
array: 'np.typing.NDArray[np.uint8]' = np.array(img)
array: np.typing.NDArray[np.uint8] = np.array(img)
array = rgb_to_mask(array, self.colormap)
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW

Просмотреть файл

@ -235,7 +235,7 @@ class DFC2022(NonGeoDataset):
the image
"""
with rasterio.open(path) as f:
array: 'np.typing.NDArray[np.float_]' = f.read(
array: np.typing.NDArray[np.float_] = f.read(
out_shape=shape, out_dtype='float32', resampling=Resampling.bilinear
)
tensor = torch.from_numpy(array)
@ -251,7 +251,7 @@ class DFC2022(NonGeoDataset):
the target mask
"""
with rasterio.open(path) as f:
array: 'np.typing.NDArray[np.int_]' = f.read(
array: np.typing.NDArray[np.int_] = f.read(
indexes=1, out_dtype='int32', resampling=Resampling.bilinear
)
tensor = torch.from_numpy(array)

Просмотреть файл

@ -204,7 +204,7 @@ class ETCI2021(NonGeoDataset):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor = torch.from_numpy(array).float()
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))
@ -221,7 +221,7 @@ class ETCI2021(NonGeoDataset):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('L'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('L'))
tensor = torch.from_numpy(array)
tensor = torch.clamp(tensor, min=0, max=1)
tensor = tensor.to(torch.long)

Просмотреть файл

@ -246,7 +246,7 @@ class EuroCrops(VectorDataset):
def apply_cmap(arr: 'np.typing.NDArray[Any]') -> 'np.typing.NDArray[np.float_]':
# Color 0 as black, while applying default color map for the class indices.
cmap = plt.get_cmap('viridis')
im: 'np.typing.NDArray[np.float_]' = cmap(arr / len(self.class_map))
im: np.typing.NDArray[np.float_] = cmap(arr / len(self.class_map))
im[arr == 0] = 0
return im

Просмотреть файл

@ -308,7 +308,7 @@ class FAIR1M(NonGeoDataset):
the image
"""
with Image.open(path) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))

Просмотреть файл

@ -197,7 +197,7 @@ class ForestDamage(NonGeoDataset):
the image
"""
with Image.open(path) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor: Tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))

Просмотреть файл

@ -904,7 +904,7 @@ class NonGeoClassificationDataset(NonGeoDataset, ImageFolder): # type: ignore[m
the image and class label
"""
img, label = ImageFolder.__getitem__(self, index)
array: 'np.typing.NDArray[np.int_]' = np.array(img)
array: np.typing.NDArray[np.int_] = np.array(img)
tensor = torch.from_numpy(array).float()
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))

Просмотреть файл

@ -189,7 +189,7 @@ class GID15(NonGeoDataset):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1)).float()
@ -206,7 +206,7 @@ class GID15(NonGeoDataset):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('L'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('L'))
tensor = torch.from_numpy(array)
tensor = tensor.to(torch.long)
return tensor

Просмотреть файл

@ -265,7 +265,7 @@ class IDTReeS(NonGeoDataset):
"""
laspy = lazy_import('laspy')
las = laspy.read(path)
array: 'np.typing.NDArray[np.int_]' = np.stack([las.x, las.y, las.z], axis=0)
array: np.typing.NDArray[np.int_] = np.stack([las.x, las.y, las.z], axis=0)
tensor = torch.from_numpy(array)
return tensor
@ -570,7 +570,7 @@ class IDTReeS(NonGeoDataset):
path = self.images[index]
path = path.replace('RGB', 'LAS').replace('.tif', '.las')
las = laspy.read(path)
points: 'np.typing.NDArray[np.int_]' = np.stack(
points: np.typing.NDArray[np.int_] = np.stack(
[las.x, las.y, las.z], axis=0
).transpose((1, 0))
point_cloud = pyvista.PolyData(points)

Просмотреть файл

@ -360,7 +360,7 @@ class LandCoverAI(LandCoverAIBase, NonGeoDataset):
"""
filename = os.path.join(self.root, 'output', id_ + '.jpg')
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img)
array: np.typing.NDArray[np.int_] = np.array(img)
tensor = torch.from_numpy(array).float()
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))
@ -378,7 +378,7 @@ class LandCoverAI(LandCoverAIBase, NonGeoDataset):
"""
filename = os.path.join(self.root, 'output', id_ + '_m.png')
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('L'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('L'))
tensor = torch.from_numpy(array).long()
return tensor

Просмотреть файл

@ -105,7 +105,7 @@ class LEVIRCDBase(NonGeoDataset, abc.ABC):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor = torch.from_numpy(array).float()
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))
@ -122,7 +122,7 @@ class LEVIRCDBase(NonGeoDataset, abc.ABC):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('L'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('L'))
tensor = torch.from_numpy(array)
tensor = torch.clamp(tensor, min=0, max=1)
tensor = tensor.to(torch.long)

Просмотреть файл

@ -208,7 +208,7 @@ class LoveDA(NonGeoDataset):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor = torch.from_numpy(array).float()
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))
@ -225,7 +225,7 @@ class LoveDA(NonGeoDataset):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('L'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('L'))
tensor = torch.from_numpy(array)
tensor = tensor.to(torch.long)
return tensor

Просмотреть файл

@ -217,7 +217,7 @@ class MapInWild(NonGeoDataset):
"""
with rasterio.open(os.path.join(self.root, source, f'{filename}.tif')) as f:
raw_array = f.read()
array: 'np.typing.NDArray[np.int_]' = np.stack(raw_array, axis=0)
array: np.typing.NDArray[np.int_] = np.stack(raw_array, axis=0)
if array.dtype == np.uint16:
array = array.astype(np.int32)
tensor = torch.from_numpy(array).float()

Просмотреть файл

@ -305,7 +305,7 @@ class MillionAID(NonGeoDataset):
the image
"""
with Image.open(path) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor: Tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))

Просмотреть файл

@ -216,11 +216,11 @@ class OSCD(NonGeoDataset):
Returns:
the image
"""
images: list['np.typing.NDArray[np.int_]'] = []
images: list[np.typing.NDArray[np.int_]] = []
for path in paths:
with Image.open(path) as img:
images.append(np.array(img))
array: 'np.typing.NDArray[np.int_]' = np.stack(images, axis=0).astype(np.int_)
array: np.typing.NDArray[np.int_] = np.stack(images, axis=0).astype(np.int_)
tensor = torch.from_numpy(array).float()
return tensor
@ -235,7 +235,7 @@ class OSCD(NonGeoDataset):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('L'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('L'))
tensor = torch.from_numpy(array)
tensor = torch.clamp(tensor, min=0, max=1)
tensor = tensor.to(torch.long)
@ -314,7 +314,7 @@ class OSCD(NonGeoDataset):
rgb_img = (np.clip((rgb_img - per02) / (per98 - per02), 0, 1) * 255).astype(
np.uint8
)
array: 'np.typing.NDArray[np.uint8]' = draw_semantic_segmentation_masks(
array: np.typing.NDArray[np.uint8] = draw_semantic_segmentation_masks(
torch.from_numpy(rgb_img),
sample['mask'],
alpha=alpha,

Просмотреть файл

@ -206,7 +206,7 @@ class Potsdam2D(NonGeoDataset):
"""
path = self.files[index]['mask']
with Image.open(path) as img:
array: 'np.typing.NDArray[np.uint8]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.uint8] = np.array(img.convert('RGB'))
array = rgb_to_mask(array, self.colormap)
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW

Просмотреть файл

@ -147,7 +147,7 @@ class ReforesTree(NonGeoDataset):
the image
"""
with Image.open(path) as img:
array: 'np.typing.NDArray[np.uint8]' = np.array(img)
array: np.typing.NDArray[np.uint8] = np.array(img)
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))

Просмотреть файл

@ -230,7 +230,7 @@ class So2Sat(NonGeoDataset):
assert split in self.filenames_by_version[version]
self._validate_bands(bands)
self.s1_band_indices: 'np.typing.NDArray[np.int_]' = np.array(
self.s1_band_indices: np.typing.NDArray[np.int_] = np.array(
[
self.all_s1_band_names.index(b)
for b in bands
@ -240,7 +240,7 @@ class So2Sat(NonGeoDataset):
self.s1_band_names = [self.all_s1_band_names[i] for i in self.s1_band_indices]
self.s2_band_indices: 'np.typing.NDArray[np.int_]' = np.array(
self.s2_band_indices: np.typing.NDArray[np.int_] = np.array(
[
self.all_s2_band_names.index(b)
for b in bands

Просмотреть файл

@ -686,7 +686,7 @@ class SpaceNet3(SpaceNet):
max_speed_bin = 65
speed_arr_bin = np.arange(min_speed_bin, max_speed_bin + 1)
bin_size_mph = 10.0
speed_cls_arr: 'np.typing.NDArray[np.int_]' = np.array(
speed_cls_arr: np.typing.NDArray[np.int_] = np.array(
[math.ceil(s / bin_size_mph) for s in speed_arr_bin]
)

Просмотреть файл

@ -180,7 +180,7 @@ class USAVars(NonGeoDataset):
the image
"""
with rasterio.open(path) as f:
array: 'np.typing.NDArray[np.int_]' = f.read()
array: np.typing.NDArray[np.int_] = f.read()
tensor = torch.from_numpy(array).float()
return tensor

Просмотреть файл

@ -190,7 +190,7 @@ class Vaihingen2D(NonGeoDataset):
"""
path = self.files[index]['image']
with Image.open(path) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1)).float()
@ -207,7 +207,7 @@ class Vaihingen2D(NonGeoDataset):
"""
path = self.files[index]['mask']
with Image.open(path) as img:
array: 'np.typing.NDArray[np.uint8]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.uint8] = np.array(img.convert('RGB'))
array = rgb_to_mask(array, self.colormap)
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW

Просмотреть файл

@ -285,7 +285,7 @@ class VHR10(NonGeoDataset):
f'{id_:03d}.jpg',
)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img)
array: np.typing.NDArray[np.int_] = np.array(img)
tensor = torch.from_numpy(array)
tensor = tensor.float()
# Convert from HxWxC to CxHxW

Просмотреть файл

@ -163,7 +163,7 @@ class XView2(NonGeoDataset):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('RGB'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))
@ -180,7 +180,7 @@ class XView2(NonGeoDataset):
"""
filename = os.path.join(path)
with Image.open(filename) as img:
array: 'np.typing.NDArray[np.int_]' = np.array(img.convert('L'))
array: np.typing.NDArray[np.int_] = np.array(img.convert('L'))
tensor = torch.from_numpy(array)
tensor = tensor.to(torch.long)
return tensor

Просмотреть файл

@ -165,7 +165,7 @@ class RCF(Module):
sqrt_zca_eigs = np.sqrt(E)
inv_sqrt_zca_eigs = np.diag(np.power(sqrt_zca_eigs, -1))
global_ZCA = V.dot(inv_sqrt_zca_eigs).dot(V.T)
patches_normalized: 'np.typing.NDArray[np.float32]' = (
patches_normalized: np.typing.NDArray[np.float32] = (
(patches).dot(global_ZCA).dot(global_ZCA.T)
)