Add South America Soybean DataModule (#1959)

* Add South America Soybean DataModule

* Add train_aug

* Regenerate data

---------

Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This commit is contained in:
Jingtong 2024-03-25 12:34:13 -05:00 коммит произвёл GitHub
Родитель 2849944a02
Коммит 5d253c55d8
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
9 изменённых файлов: 147 добавлений и 10 удалений

Просмотреть файл

@ -36,6 +36,7 @@ Sentinel
.. autoclass:: Sentinel2CDLDataModule
.. autoclass:: Sentinel2NCCMDataModule
.. autoclass:: Sentinel2SouthAmericaSoybeanDataModule
Non-geospatial DataModules
--------------------------

Просмотреть файл

@ -0,0 +1,17 @@
model:
class_path: SemanticSegmentationTask
init_args:
loss: "ce"
model: "deeplabv3+"
backbone: "resnet18"
in_channels: 13
num_classes: 2
num_filters: 1
data:
class_path: Sentinel2SouthAmericaSoybeanDataModule
init_args:
batch_size: 2
patch_size: 16
dict_kwargs:
south_america_soybean_paths: "tests/data/south_america_soybean"
sentinel2_paths: "tests/data/sentinel2"

Двоичный файл не отображается.

Двоичный файл не отображается.

Двоичный файл не отображается.

Просмотреть файл

@ -11,7 +11,7 @@ import rasterio
from rasterio.crs import CRS
from rasterio.transform import Affine
SIZE = 32
SIZE = 128
np.random.seed(0)
@ -24,15 +24,8 @@ def create_file(path: str, dtype: str):
"driver": "GTiff",
"dtype": dtype,
"count": 1,
"crs": CRS.from_epsg(4326),
"transform": Affine(
0.0002499999999999943131,
0.0,
-82.0005000000000024,
0.0,
-0.0002499999999999943131,
0.0005000000000000,
),
"crs": CRS.from_epsg(32616),
"transform": Affine(10, 0.0, 399960.0, 0.0, -10, 4500000.0),
"height": SIZE,
"width": SIZE,
"compress": "lzw",

Просмотреть файл

@ -75,6 +75,7 @@ class TestSemanticSegmentationTask:
"sen12ms_s2_reduced",
"sentinel2_cdl",
"sentinel2_nccm",
"sentinel2_south_america_soybean",
"spacenet1",
"ssl4eo_l_benchmark_cdl",
"ssl4eo_l_benchmark_nlcd",

Просмотреть файл

@ -31,6 +31,7 @@ from .seco import SeasonalContrastS2DataModule
from .sen12ms import SEN12MSDataModule
from .sentinel2_cdl import Sentinel2CDLDataModule
from .sentinel2_nccm import Sentinel2NCCMDataModule
from .sentinel2_south_america_soybean import Sentinel2SouthAmericaSoybeanDataModule
from .skippd import SKIPPDDataModule
from .so2sat import So2SatDataModule
from .spacenet import SpaceNet1DataModule
@ -53,6 +54,7 @@ __all__ = (
"NAIPChesapeakeDataModule",
"Sentinel2CDLDataModule",
"Sentinel2NCCMDataModule",
"Sentinel2SouthAmericaSoybeanDataModule",
# NonGeoDataset
"BigEarthNetDataModule",
"ChaBuDDataModule",

Просмотреть файл

@ -0,0 +1,123 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""South America Soybean datamodule."""
from typing import Any, Optional, Union
import kornia.augmentation as K
import torch
from kornia.constants import DataKey, Resample
from matplotlib.figure import Figure
from ..datasets import Sentinel2, SouthAmericaSoybean, random_grid_cell_assignment
from ..samplers import GridGeoSampler, RandomBatchGeoSampler
from ..samplers.utils import _to_tuple
from ..transforms import AugmentationSequential
from .geo import GeoDataModule
class Sentinel2SouthAmericaSoybeanDataModule(GeoDataModule):
"""LightningDataModule for SouthAmericaSoybean and Sentinel2 datasets.
.. versionadded:: 0.6
"""
def __init__(
self,
batch_size: int = 64,
patch_size: Union[int, tuple[int, int]] = 64,
length: Optional[int] = None,
num_workers: int = 0,
**kwargs: Any,
) -> None:
"""Initialize a new Sentinel2SouthAmericaSoybeanDataModule instance.
Args:
batch_size: Size of each mini-batch.
patch_size: Size of each patch, either ``size`` or ``(height, width)``.
length: Length of each training epoch.
num_workers: Number of workers for parallel data loading.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.SouthAmericaSoybean`
(prefix keys with ``south_america_soybean_``) and
:class:`~torchgeo.datasets.Sentinel2`
(prefix keys with ``sentinel2_``).
"""
self.south_america_soybean_kwargs = {}
self.sentinel2_kwargs = {}
for key, val in kwargs.items():
if key.startswith("south_america_soybean_"):
self.south_america_soybean_kwargs[key[22:]] = val
elif key.startswith("sentinel2_"):
self.sentinel2_kwargs[key[10:]] = val
super().__init__(
SouthAmericaSoybean,
batch_size=batch_size,
patch_size=patch_size,
length=length,
num_workers=num_workers,
**kwargs,
)
self.train_aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
K.RandomResizedCrop(_to_tuple(self.patch_size), scale=(0.6, 1.0)),
K.RandomVerticalFlip(p=0.5),
K.RandomHorizontalFlip(p=0.5),
data_keys=["image", "mask"],
extra_args={
DataKey.MASK: {"resample": Resample.NEAREST, "align_corners": None}
},
)
self.aug = AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std), data_keys=["image", "mask"]
)
def setup(self, stage: str) -> None:
"""Set up datasets and samplers.
Args:
stage: Either 'fit', 'validate', 'test', or 'predict'.
"""
self.sentinel2 = Sentinel2(**self.sentinel2_kwargs)
self.south_america_soybean = SouthAmericaSoybean(
**self.south_america_soybean_kwargs
)
self.dataset = self.sentinel2 & self.south_america_soybean
generator = torch.Generator().manual_seed(1)
(self.train_dataset, self.val_dataset, self.test_dataset) = (
random_grid_cell_assignment(
self.dataset, [0.8, 0.1, 0.1], grid_size=8, generator=generator
)
)
if stage in ["fit"]:
self.train_batch_sampler = RandomBatchGeoSampler(
self.train_dataset, self.patch_size, self.batch_size, self.length
)
if stage in ["fit", "validate"]:
self.val_sampler = GridGeoSampler(
self.val_dataset, self.patch_size, self.patch_size
)
if stage in ["test"]:
self.test_sampler = GridGeoSampler(
self.test_dataset, self.patch_size, self.patch_size
)
def plot(self, *args: Any, **kwargs: Any) -> Figure:
"""Run SouthAmericaSoybean plot method.
Args:
*args: Arguments passed to plot method.
**kwargs: Keyword arguments passed to plot method.
Returns:
A matplotlib Figure with the image, ground truth, and predictions.
"""
return self.south_america_soybean.plot(*args, **kwargs)