* draft

* add dataset to __init__

* reorganize datasets and datamodules

* fix mypy errors

* draft

* add dataset to __init__

* reorganize datasets and datamodules

* fix mypy errors

* refactor

* Adding docs

* Adding plotting, cleaning up some stuff

* Black and isort

* Fix the datamodule import

* Pyupgrade

* Fixing some docstrings

* Flake8

* Isort

* Fix docstrings in datamodules

* Fixing fns and docstring

* Trying to fix the docs

* Trying to fix docs

* Adding tests

* Black

* newline

* Made the test dataset larger

* Remove the datamodules

* Update docs/api/non_geo_datasets.csv

Co-authored-by: Isaac Corley <22203655+isaaccorley@users.noreply.github.com>

* Update torchgeo/datasets/pastis.py

Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>

* Update torchgeo/datasets/pastis.py

Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>

* Update torchgeo/datasets/pastis.py

Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>

* Updating cmap

* Describe the different band combinations

* Merging datasets

* Handle the instance segmentation case in plotting

* Update torchgeo/datasets/pastis.py

Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>

* Made some code prettier

* Adding instance plotting

---------

Co-authored-by: Caleb Robinson <calebrob6@gmail.com>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This commit is contained in:
Isaac Corley 2023-08-03 13:46:49 -05:00 коммит произвёл GitHub
Родитель f0cacd5402
Коммит 711a576e38
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
7 изменённых файлов: 614 добавлений и 0 удалений

Просмотреть файл

@ -272,6 +272,11 @@ OSCD
.. autoclass:: OSCD .. autoclass:: OSCD
PASTIS
^^^^^^
.. autoclass:: PASTIS
PatternNet PatternNet
^^^^^^^^^^ ^^^^^^^^^^

Просмотреть файл

@ -21,6 +21,7 @@ Dataset,Task,Source,# Samples,# Classes,Size (px),Resolution (m),Bands
`Million-AID`_,C,Google Earth,1M,51--73,,0.5--153,RGB `Million-AID`_,C,Google Earth,1M,51--73,,0.5--153,RGB
`NASA Marine Debris`_,OD,PlanetScope,707,1,256x256,3,RGB `NASA Marine Debris`_,OD,PlanetScope,707,1,256x256,3,RGB
`OSCD`_,CD,Sentinel-2,24,2,"40--1,180",60,MSI `OSCD`_,CD,Sentinel-2,24,2,"40--1,180",60,MSI
`PASTIS`_,I,Sentinel-1/2,"2,433",19,128x128xT,10,MSI
`PatternNet`_,C,Google Earth,"30,400",38,256x256,0.06--5,RGB `PatternNet`_,C,Google Earth,"30,400",38,256x256,0.06--5,RGB
`Potsdam`_,S,Aerial,38,6,"6,000x6,000",0.05,MSI `Potsdam`_,S,Aerial,38,6,"6,000x6,000",0.05,MSI
`ReforesTree`_,"OD, R",Aerial,100,6,"4,000x4,000",0.02,RGB `ReforesTree`_,"OD, R",Aerial,100,6,"4,000x4,000",0.02,RGB

1 Dataset Task Source # Samples # Classes Size (px) Resolution (m) Bands
21 `Million-AID`_ C Google Earth 1M 51--73 0.5--153 RGB
22 `NASA Marine Debris`_ OD PlanetScope 707 1 256x256 3 RGB
23 `OSCD`_ CD Sentinel-2 24 2 40--1,180 60 MSI
24 `PASTIS`_ I Sentinel-1/2 2,433 19 128x128xT 10 MSI
25 `PatternNet`_ C Google Earth 30,400 38 256x256 0.06--5 RGB
26 `Potsdam`_ S Aerial 38 6 6,000x6,000 0.05 MSI
27 `ReforesTree`_ OD, R Aerial 100 6 4,000x4,000 0.02 RGB

Двоичные данные
tests/data/pastis/PASTIS-R.zip Normal file

Двоичный файл не отображается.

91
tests/data/pastis/data.py Normal file
Просмотреть файл

@ -0,0 +1,91 @@
#!/usr/bin/env python3
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import hashlib
import os
import shutil
from typing import Union
import fiona
import numpy as np
SIZE = 32
NUM_SAMPLES = 5
MAX_NUM_TIME_STEPS = 10
np.random.seed(0)
FILENAME_HIERARCHY = Union[dict[str, "FILENAME_HIERARCHY"], list[str]]
filenames: FILENAME_HIERARCHY = {
"DATA_S2": ["S2"],
"DATA_S1A": ["S1A"],
"DATA_S1D": ["S1D"],
"ANNOTATIONS": ["TARGET"],
"INSTANCE_ANNOTATIONS": ["INSTANCES"],
}
def create_file(path: str) -> None:
for i in range(NUM_SAMPLES):
new_path = f"{path}_{i}.npy"
fn = os.path.basename(new_path)
t = np.random.randint(1, MAX_NUM_TIME_STEPS)
if fn.startswith("S2"):
data = np.random.randint(0, 256, size=(t, 10, SIZE, SIZE)).astype(np.int16)
elif fn.startswith("S1A"):
data = np.random.randint(0, 256, size=(t, 3, SIZE, SIZE)).astype(np.float16)
elif fn.startswith("S1D"):
data = np.random.randint(0, 256, size=(t, 3, SIZE, SIZE)).astype(np.float16)
elif fn.startswith("TARGET"):
data = np.random.randint(0, 20, size=(3, SIZE, SIZE)).astype(np.uint8)
elif fn.startswith("INSTANCES"):
data = np.random.randint(0, 100, size=(SIZE, SIZE)).astype(np.int64)
np.save(new_path, data)
def create_directory(directory: str, hierarchy: FILENAME_HIERARCHY) -> None:
if isinstance(hierarchy, dict):
# Recursive case
for key, value in hierarchy.items():
path = os.path.join(directory, key)
os.makedirs(path, exist_ok=True)
create_directory(path, value)
else:
# Base case
for value in hierarchy:
path = os.path.join(directory, value)
create_file(path)
if __name__ == "__main__":
create_directory("PASTIS-R", filenames)
schema = {"geometry": "Polygon", "properties": {"Fold": "int", "ID_PATCH": "int"}}
with fiona.open(
os.path.join("PASTIS-R", "metadata.geojson"),
"w",
"GeoJSON",
crs="EPSG:4326",
schema=schema,
) as f:
for i in range(NUM_SAMPLES):
f.write(
{
"geometry": {
"type": "Polygon",
"coordinates": [[[0, 0], [0, 1], [1, 1], [1, 0], [0, 0]]],
},
"id": str(i),
"properties": {"Fold": i % 5, "ID_PATCH": i},
}
)
filename = "PASTIS-R.zip"
shutil.make_archive(filename.replace(".zip", ""), "zip", ".", "PASTIS-R")
# Compute checksums
with open(filename, "rb") as f:
md5 = hashlib.md5(f.read()).hexdigest()
print(f"{filename}: {md5}")

Просмотреть файл

@ -0,0 +1,110 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import os
import shutil
from pathlib import Path
import matplotlib.pyplot as plt
import pytest
import torch
import torch.nn as nn
from _pytest.fixtures import SubRequest
from pytest import MonkeyPatch
from torch.utils.data import ConcatDataset
import torchgeo.datasets.utils
from torchgeo.datasets import PASTIS
def download_url(url: str, root: str, *args: str, **kwargs: str) -> None:
shutil.copy(url, root)
class TestPASTIS:
@pytest.fixture(
params=[
{"folds": (0, 1), "bands": "s2", "mode": "semantic"},
{"folds": (0, 1), "bands": "s1a", "mode": "semantic"},
{"folds": (0, 1), "bands": "s1d", "mode": "instance"},
]
)
def dataset(
self, monkeypatch: MonkeyPatch, tmp_path: Path, request: SubRequest
) -> PASTIS:
monkeypatch.setattr(torchgeo.datasets.pastis, "download_url", download_url)
md5 = "9b11ae132623a0d13f7f0775d2003703"
monkeypatch.setattr(PASTIS, "md5", md5)
url = os.path.join("tests", "data", "pastis", "PASTIS-R.zip")
monkeypatch.setattr(PASTIS, "url", url)
root = str(tmp_path)
folds = request.param["folds"]
bands = request.param["bands"]
mode = request.param["mode"]
transforms = nn.Identity()
return PASTIS(
root, folds, bands, mode, transforms, download=True, checksum=True
)
def test_getitem_semantic(self, dataset: PASTIS) -> None:
x = dataset[0]
assert isinstance(x, dict)
assert isinstance(x["image"], torch.Tensor)
assert isinstance(x["mask"], torch.Tensor)
def test_getitem_instance(self, dataset: PASTIS) -> None:
dataset.mode = "instance"
x = dataset[0]
assert isinstance(x, dict)
assert isinstance(x["image"], torch.Tensor)
assert isinstance(x["mask"], torch.Tensor)
assert isinstance(x["boxes"], torch.Tensor)
assert isinstance(x["label"], torch.Tensor)
def test_len(self, dataset: PASTIS) -> None:
assert len(dataset) == 2
def test_add(self, dataset: PASTIS) -> None:
ds = dataset + dataset
assert isinstance(ds, ConcatDataset)
assert len(ds) == 4
def test_already_extracted(self, dataset: PASTIS) -> None:
PASTIS(root=dataset.root, download=True)
def test_already_downloaded(self, tmp_path: Path) -> None:
url = os.path.join("tests", "data", "pastis", "PASTIS-R.zip")
root = str(tmp_path)
shutil.copy(url, root)
PASTIS(root)
def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(RuntimeError, match="Dataset not found"):
PASTIS(str(tmp_path))
def test_corrupted(self, tmp_path: Path) -> None:
with open(os.path.join(tmp_path, "PASTIS-R.zip"), "w") as f:
f.write("bad")
with pytest.raises(RuntimeError, match="Dataset found, but corrupted."):
PASTIS(root=str(tmp_path), checksum=True)
def test_invalid_fold(self) -> None:
with pytest.raises(AssertionError):
PASTIS(folds=(6,))
def test_invalid_mode(self) -> None:
with pytest.raises(AssertionError):
PASTIS(mode="invalid")
def test_plot(self, dataset: PASTIS) -> None:
x = dataset[0].copy()
dataset.plot(x, suptitle="Test")
plt.close()
dataset.plot(x, show_titles=False)
plt.close()
x["prediction"] = x["mask"].clone()
if dataset.mode == "instance":
x["prediction_labels"] = x["label"].clone()
dataset.plot(x)
plt.close()

Просмотреть файл

@ -78,6 +78,7 @@ from .nasa_marine_debris import NASAMarineDebris
from .nlcd import NLCD from .nlcd import NLCD
from .openbuildings import OpenBuildings from .openbuildings import OpenBuildings
from .oscd import OSCD from .oscd import OSCD
from .pastis import PASTIS
from .patternnet import PatternNet from .patternnet import PatternNet
from .potsdam import Potsdam2D from .potsdam import Potsdam2D
from .reforestree import ReforesTree from .reforestree import ReforesTree
@ -194,6 +195,7 @@ __all__ = (
"MillionAID", "MillionAID",
"NASAMarineDebris", "NASAMarineDebris",
"OSCD", "OSCD",
"PASTIS",
"PatternNet", "PatternNet",
"Potsdam2D", "Potsdam2D",
"RESISC45", "RESISC45",

405
torchgeo/datasets/pastis.py Normal file
Просмотреть файл

@ -0,0 +1,405 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""PASTIS dataset."""
import os
from collections.abc import Sequence
from typing import Callable, Optional
import fiona
import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib.colors import ListedColormap
from torch import Tensor
from .geo import NonGeoDataset
from .utils import check_integrity, download_url, extract_archive
class PASTIS(NonGeoDataset):
"""PASTIS dataset.
The `PASTIS <https://github.com/VSainteuf/pastis-benchmark>`__
dataset is a dataset for time-series panoptic segmentation of agricultural parcels.
Dataset features:
* support for the original PASTIS and PASTIS-R versions of the dataset
* 2,433 time-series with 10 m per pixel resolution (128x128 px)
* 18 crop categories, 1 background category, 1 void category
* semantic and instance annotations
* 3 Sentinel-1 Ascending bands
* 3 Sentinel-1 Descending bands
* 10 Sentinel-2 L2A multispectral bands
Dataset format:
* time-series and annotations are in numpy format (.npy)
Dataset classes:
0. Background
1. Meadow
2. Soft Winter Wheat
3. Corn
4. Winter Barley
5. Winter Rapeseed
6. Spring Barley
7. Sunflower
8. Grapevine
9. Beet
10. Winter Triticale
11. Winter Durum Wheat
12. Fruits Vegetables Flowers
13. Potatoes
14. Leguminous Fodder
15. Soybeans
16. Orchard
17. Mixed Cereal
18. Sorghum
19. Void Label
If you use this dataset in your research, please cite the following papers:
* https://doi.org/10.1109/ICCV48922.2021.00483
* https://doi.org/10.1016/j.isprsjprs.2022.03.012
.. versionadded:: 0.5
"""
classes = [
"background", # all non-agricultural land
"meadow",
"soft_winter_wheat",
"corn",
"winter_barley",
"winter_rapeseed",
"spring_barley",
"sunflower",
"grapevine",
"beet",
"winter_triticale",
"winter_durum_wheat",
"fruits_vegetables_flowers",
"potatoes",
"leguminous_fodder",
"soybeans",
"orchard",
"mixed_cereal",
"sorghum",
"void_label", # for parcels mostly outside their patch
]
cmap = {
0: (0, 0, 0, 255),
1: (174, 199, 232, 255),
2: (255, 127, 14, 255),
3: (255, 187, 120, 255),
4: (44, 160, 44, 255),
5: (152, 223, 138, 255),
6: (214, 39, 40, 255),
7: (255, 152, 150, 255),
8: (148, 103, 189, 255),
9: (197, 176, 213, 255),
10: (140, 86, 75, 255),
11: (196, 156, 148, 255),
12: (227, 119, 194, 255),
13: (247, 182, 210, 255),
14: (127, 127, 127, 255),
15: (199, 199, 199, 255),
16: (188, 189, 34, 255),
17: (219, 219, 141, 255),
18: (23, 190, 207, 255),
19: (255, 255, 255, 255),
}
directory = "PASTIS-R"
filename = "PASTIS-R.zip"
url = "https://zenodo.org/record/5735646/files/PASTIS-R.zip?download=1"
md5 = "4887513d6c2d2b07fa935d325bd53e09"
prefix = {
"s2": os.path.join("DATA_S2", "S2_"),
"s1a": os.path.join("DATA_S1A", "S1A_"),
"s1d": os.path.join("DATA_S1D", "S1D_"),
"semantic": os.path.join("ANNOTATIONS", "TARGET_"),
"instance": os.path.join("INSTANCE_ANNOTATIONS", "INSTANCES_"),
}
def __init__(
self,
root: str = "data",
folds: Sequence[int] = (0, 1, 2, 3, 4),
bands: str = "s2",
mode: str = "semantic",
transforms: Optional[Callable[[dict[str, Tensor]], dict[str, Tensor]]] = None,
download: bool = False,
checksum: bool = False,
) -> None:
"""Initialize a new PASTIS dataset instance.
Args:
root: root directory where dataset can be found
folds: a sequence of integers from 0 to 4 specifying which of the five
dataset folds to include
bands: load Sentinel-1 ascending path data (s1a), Sentinel-1 descending path
data (s1d), or Sentinel-2 data (s2)
mode: load semantic (semantic) or instance (instance) annotations
transforms: a function/transform that takes input sample and its target as
entry and returns a transformed version
download: if True, download dataset and store it in the root directory
checksum: if True, check the MD5 of the downloaded files (may be slow)
"""
assert set(folds) <= set(range(6))
assert bands in ["s1a", "s1d", "s2"]
assert mode in ["semantic", "instance"]
self.root = root
self.folds = folds
self.bands = bands
self.mode = mode
self.transforms = transforms
self.download = download
self.checksum = checksum
self._verify()
self.files = self._load_files()
colors = []
for i in range(len(self.cmap)):
colors.append(
(
self.cmap[i][0] / 255.0,
self.cmap[i][1] / 255.0,
self.cmap[i][2] / 255.0,
)
)
self._cmap = ListedColormap(colors)
def __getitem__(self, index: int) -> dict[str, Tensor]:
"""Return an index within the dataset.
Args:
index: index to return
Returns:
data and label at that index
"""
image = self._load_image(index)
if self.mode == "semantic":
mask = self._load_semantic_targets(index)
sample = {"image": image, "mask": mask}
elif self.mode == "instance":
mask, boxes, labels = self._load_instance_targets(index)
sample = {"image": image, "mask": mask, "boxes": boxes, "label": labels}
if self.transforms is not None:
sample = self.transforms(sample)
return sample
def __len__(self) -> int:
"""Return the number of data points in the dataset.
Returns:
length of the dataset
"""
return len(self.idxs)
def _load_image(self, index: int) -> Tensor:
"""Load a single time-series.
Args:
index: index to return
Returns:
the time-series
"""
path = self.files[index][self.bands]
array = np.load(path)
tensor = torch.from_numpy(array)
return tensor
def _load_semantic_targets(self, index: int) -> Tensor:
"""Load the target mask for a single image.
Args:
index: index to return
Returns:
the target mask
"""
# See https://github.com/VSainteuf/pastis-benchmark/blob/main/code/dataloader.py#L201 # noqa: E501
# even though the mask file is 3 bands, we just select the first band
array = np.load(self.files[index]["semantic"])[0].astype(np.uint8)
tensor = torch.from_numpy(array).long()
return tensor
def _load_instance_targets(self, index: int) -> tuple[Tensor, Tensor, Tensor]:
"""Load the instance segmentation targets for a single sample.
Args:
index: index to return
Returns:
the instance segmentation mask, box, and label for each instance
"""
mask_array = np.load(self.files[index]["semantic"])[0]
instance_array = np.load(self.files[index]["instance"])
mask_tensor = torch.from_numpy(mask_array)
instance_tensor = torch.from_numpy(instance_array)
# Convert instance mask of N instances to N binary instance masks
instance_ids = torch.unique(instance_tensor)
# Exclude a mask for unknown/background
instance_ids = instance_ids[instance_ids != 0]
instance_ids = instance_ids[:, None, None]
masks: Tensor = instance_tensor == instance_ids
# Parse labels for each instance
labels_list = []
for mask in masks:
label = mask_tensor[mask]
label = torch.unique(label)[0]
labels_list.append(label)
# Get bounding boxes for each instance
boxes_list = []
for mask in masks:
pos = torch.where(mask)
xmin = torch.min(pos[1])
xmax = torch.max(pos[1])
ymin = torch.min(pos[0])
ymax = torch.max(pos[0])
boxes_list.append([xmin, ymin, xmax, ymax])
masks = masks.to(torch.uint8)
boxes = torch.tensor(boxes_list).to(torch.float)
labels = torch.tensor(labels_list).to(torch.long)
return masks, boxes, labels
def _load_files(self) -> list[dict[str, str]]:
"""List the image and target files.
Returns:
list of dicts containing image and semantic/instance target file paths
"""
self.idxs = []
metadata_fn = os.path.join(self.root, self.directory, "metadata.geojson")
with fiona.open(metadata_fn) as f:
for row in f:
fold = int(row["properties"]["Fold"])
if fold in self.folds:
self.idxs.append(row["properties"]["ID_PATCH"])
files = []
for i in self.idxs:
path = os.path.join(self.root, self.directory, "{}") + str(i) + ".npy"
files.append(
{
"s2": path.format(self.prefix["s2"]),
"s1a": path.format(self.prefix["s1a"]),
"s1d": path.format(self.prefix["s1d"]),
"semantic": path.format(self.prefix["semantic"]),
"instance": path.format(self.prefix["instance"]),
}
)
return files
def _verify(self) -> None:
"""Verify the integrity of the dataset.
Raises:
RuntimeError: if ``download=False`` but dataset is missing or checksum fails
"""
# Check if the directory already exists
path = os.path.join(self.root, self.directory)
if os.path.exists(path):
return
# Check if zip file already exists (if so then extract)
filepath = os.path.join(self.root, self.filename)
if os.path.exists(filepath):
if self.checksum and not check_integrity(filepath, self.md5):
raise RuntimeError("Dataset found, but corrupted.")
extract_archive(filepath)
return
# Check if the user requested to download the dataset
if not self.download:
raise RuntimeError(
f"Dataset not found in `root={self.root}` and `download=False`, "
"either specify a different `root` directory or use `download=True` "
"to automatically download the dataset."
)
# Download and extract the dataset
self._download()
def _download(self) -> None:
"""Download the dataset."""
download_url(
self.url,
self.root,
filename=self.filename,
md5=self.md5 if self.checksum else None,
)
extract_archive(os.path.join(self.root, self.filename), self.root)
def plot(
self,
sample: dict[str, Tensor],
show_titles: bool = True,
suptitle: Optional[str] = None,
) -> plt.Figure:
"""Plot a sample from the dataset.
Args:
sample: a sample returned by :meth:`__getitem__`
show_titles: flag indicating whether to show titles above each panel
suptitle: optional string to use as a suptitle
Returns:
a matplotlib Figure with the rendered sample
"""
# Keep the RGB bands and convert to T x H x W x C format
images = sample["image"][:, [2, 1, 0], :, :].numpy().transpose(0, 2, 3, 1)
mask = sample["mask"].numpy()
if self.mode == "instance":
label = sample["label"]
mask = label[mask.argmax(axis=0)].numpy()
num_panels = 3
showing_predictions = "prediction" in sample
if showing_predictions:
predictions = sample["prediction"].numpy()
num_panels += 1
if self.mode == "instance":
predictions = predictions.argmax(axis=0)
label = sample["prediction_labels"]
predictions = label[predictions].numpy()
fig, axs = plt.subplots(1, num_panels, figsize=(num_panels * 4, 4))
axs[0].imshow(images[0] / 5000)
axs[1].imshow(images[1] / 5000)
axs[2].imshow(mask, vmin=0, vmax=19, cmap=self._cmap, interpolation="none")
axs[0].axis("off")
axs[1].axis("off")
axs[2].axis("off")
if showing_predictions:
axs[3].imshow(
predictions, vmin=0, vmax=19, cmap=self._cmap, interpolation="none"
)
axs[3].axis("off")
if show_titles:
axs[0].set_title("Image 0")
axs[1].set_title("Image 1")
axs[2].set_title("Mask")
if showing_predictions:
axs[3].set_title("Prediction")
if suptitle is not None:
plt.suptitle(suptitle)
return fig