Bump black[jupyter] from 23.12.1 to 24.1.0 in /requirements (#1829)

* Bump black[jupyter] from 23.12.1 to 24.1.0 in /requirements

Bumps [black[jupyter]](https://github.com/psf/black) from 23.12.1 to 24.1.0.
- [Release notes](https://github.com/psf/black/releases)
- [Changelog](https://github.com/psf/black/blob/main/CHANGES.md)
- [Commits](https://github.com/psf/black/compare/23.12.1...24.1.0)

---
updated-dependencies:
- dependency-name: black[jupyter]
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>

* Update TorchGeo

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This commit is contained in:
dependabot[bot] 2024-01-27 11:12:00 +00:00 коммит произвёл GitHub
Родитель a3f3e40541
Коммит 7b8692b3f4
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
9 изменённых файлов: 26 добавлений и 29 удалений

Просмотреть файл

@ -12,7 +12,7 @@ repos:
additional_dependencies: ['.[colors]']
- repo: https://github.com/psf/black
rev: 23.12.1
rev: 24.1.0
hooks:
- id: black
args: [--skip-magic-trailing-comma]

Просмотреть файл

@ -65,9 +65,10 @@ if __name__ == "__main__":
layer_name = "cdl"
for img_path in tqdm(paths):
with rasterio.open(img_path) as img_src, rasterio.open(
args.mask_path
) as mask_src:
with (
rasterio.open(img_path) as img_src,
rasterio.open(args.mask_path) as mask_src,
):
if mask_src.crs != img_src.crs:
mask_src = WarpedVRT(mask_src, crs=img_src.crs)

Просмотреть файл

@ -1,5 +1,5 @@
# style
black[jupyter]==23.12.1
black[jupyter]==24.1.0
flake8==7.0.0
isort[colors]==5.13.2
pydocstyle[toml]==6.3.0

Просмотреть файл

@ -68,11 +68,9 @@ class L7IrishDataModule(GeoDataModule):
"""
dataset = L7Irish(**self.kwargs)
generator = torch.Generator().manual_seed(0)
(
self.train_dataset,
self.val_dataset,
self.test_dataset,
) = random_bbox_assignment(dataset, [0.6, 0.2, 0.2], generator)
(self.train_dataset, self.val_dataset, self.test_dataset) = (
random_bbox_assignment(dataset, [0.6, 0.2, 0.2], generator)
)
if stage in ["fit"]:
self.train_batch_sampler = RandomBatchGeoSampler(

Просмотреть файл

@ -68,11 +68,9 @@ class L8BiomeDataModule(GeoDataModule):
"""
dataset = L8Biome(**self.kwargs)
generator = torch.Generator().manual_seed(0)
(
self.train_dataset,
self.val_dataset,
self.test_dataset,
) = random_bbox_assignment(dataset, [0.6, 0.2, 0.2], generator)
(self.train_dataset, self.val_dataset, self.test_dataset) = (
random_bbox_assignment(dataset, [0.6, 0.2, 0.2], generator)
)
if stage in ["fit"]:
self.train_batch_sampler = RandomBatchGeoSampler(

Просмотреть файл

@ -407,14 +407,12 @@ class IDTReeS(NonGeoDataset):
@overload
def _filter_boxes(
self, image_size: tuple[int, int], min_size: int, boxes: Tensor, labels: Tensor
) -> tuple[Tensor, Tensor]:
...
) -> tuple[Tensor, Tensor]: ...
@overload
def _filter_boxes(
self, image_size: tuple[int, int], min_size: int, boxes: Tensor, labels: None
) -> tuple[Tensor, None]:
...
) -> tuple[Tensor, None]: ...
def _filter_boxes(
self,

Просмотреть файл

@ -237,9 +237,11 @@ class SSL4EOLBenchmark(NonGeoDataset):
download_url(
self.url.format(self.mask_dir_name),
self.root,
md5=self.mask_md5s[self.sensor.split("_")[0]][self.product]
if self.checksum
else None,
md5=(
self.mask_md5s[self.sensor.split("_")[0]][self.product]
if self.checksum
else None
),
)
def _extract(self) -> None:

Просмотреть файл

@ -219,9 +219,11 @@ class _LightWeightDecoder(Module):
),
BatchNorm2d(out_channels),
ReLU(inplace=True),
UpsamplingBilinear2d(scale_factor=2)
if num_upsample != 0
else Identity(),
(
UpsamplingBilinear2d(scale_factor=2)
if num_upsample != 0
else Identity()
),
)
for idx in range(num_layers)
]

Просмотреть файл

@ -12,13 +12,11 @@ from ..datasets import BoundingBox
@overload
def _to_tuple(value: Union[tuple[int, int], int]) -> tuple[int, int]:
...
def _to_tuple(value: Union[tuple[int, int], int]) -> tuple[int, int]: ...
@overload
def _to_tuple(value: Union[tuple[float, float], float]) -> tuple[float, float]:
...
def _to_tuple(value: Union[tuple[float, float], float]) -> tuple[float, float]: ...
def _to_tuple(value: Union[tuple[float, float], float]) -> tuple[float, float]: