зеркало из https://github.com/microsoft/torchgeo.git
Bump black[jupyter] from 23.12.1 to 24.1.0 in /requirements (#1829)
* Bump black[jupyter] from 23.12.1 to 24.1.0 in /requirements Bumps [black[jupyter]](https://github.com/psf/black) from 23.12.1 to 24.1.0. - [Release notes](https://github.com/psf/black/releases) - [Changelog](https://github.com/psf/black/blob/main/CHANGES.md) - [Commits](https://github.com/psf/black/compare/23.12.1...24.1.0) --- updated-dependencies: - dependency-name: black[jupyter] dependency-type: direct:production update-type: version-update:semver-major ... Signed-off-by: dependabot[bot] <support@github.com> * Update TorchGeo --------- Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This commit is contained in:
Родитель
a3f3e40541
Коммит
7b8692b3f4
|
@ -12,7 +12,7 @@ repos:
|
|||
additional_dependencies: ['.[colors]']
|
||||
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 23.12.1
|
||||
rev: 24.1.0
|
||||
hooks:
|
||||
- id: black
|
||||
args: [--skip-magic-trailing-comma]
|
||||
|
|
|
@ -65,9 +65,10 @@ if __name__ == "__main__":
|
|||
layer_name = "cdl"
|
||||
|
||||
for img_path in tqdm(paths):
|
||||
with rasterio.open(img_path) as img_src, rasterio.open(
|
||||
args.mask_path
|
||||
) as mask_src:
|
||||
with (
|
||||
rasterio.open(img_path) as img_src,
|
||||
rasterio.open(args.mask_path) as mask_src,
|
||||
):
|
||||
if mask_src.crs != img_src.crs:
|
||||
mask_src = WarpedVRT(mask_src, crs=img_src.crs)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
# style
|
||||
black[jupyter]==23.12.1
|
||||
black[jupyter]==24.1.0
|
||||
flake8==7.0.0
|
||||
isort[colors]==5.13.2
|
||||
pydocstyle[toml]==6.3.0
|
||||
|
|
|
@ -68,11 +68,9 @@ class L7IrishDataModule(GeoDataModule):
|
|||
"""
|
||||
dataset = L7Irish(**self.kwargs)
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
(
|
||||
self.train_dataset,
|
||||
self.val_dataset,
|
||||
self.test_dataset,
|
||||
) = random_bbox_assignment(dataset, [0.6, 0.2, 0.2], generator)
|
||||
(self.train_dataset, self.val_dataset, self.test_dataset) = (
|
||||
random_bbox_assignment(dataset, [0.6, 0.2, 0.2], generator)
|
||||
)
|
||||
|
||||
if stage in ["fit"]:
|
||||
self.train_batch_sampler = RandomBatchGeoSampler(
|
||||
|
|
|
@ -68,11 +68,9 @@ class L8BiomeDataModule(GeoDataModule):
|
|||
"""
|
||||
dataset = L8Biome(**self.kwargs)
|
||||
generator = torch.Generator().manual_seed(0)
|
||||
(
|
||||
self.train_dataset,
|
||||
self.val_dataset,
|
||||
self.test_dataset,
|
||||
) = random_bbox_assignment(dataset, [0.6, 0.2, 0.2], generator)
|
||||
(self.train_dataset, self.val_dataset, self.test_dataset) = (
|
||||
random_bbox_assignment(dataset, [0.6, 0.2, 0.2], generator)
|
||||
)
|
||||
|
||||
if stage in ["fit"]:
|
||||
self.train_batch_sampler = RandomBatchGeoSampler(
|
||||
|
|
|
@ -407,14 +407,12 @@ class IDTReeS(NonGeoDataset):
|
|||
@overload
|
||||
def _filter_boxes(
|
||||
self, image_size: tuple[int, int], min_size: int, boxes: Tensor, labels: Tensor
|
||||
) -> tuple[Tensor, Tensor]:
|
||||
...
|
||||
) -> tuple[Tensor, Tensor]: ...
|
||||
|
||||
@overload
|
||||
def _filter_boxes(
|
||||
self, image_size: tuple[int, int], min_size: int, boxes: Tensor, labels: None
|
||||
) -> tuple[Tensor, None]:
|
||||
...
|
||||
) -> tuple[Tensor, None]: ...
|
||||
|
||||
def _filter_boxes(
|
||||
self,
|
||||
|
|
|
@ -237,9 +237,11 @@ class SSL4EOLBenchmark(NonGeoDataset):
|
|||
download_url(
|
||||
self.url.format(self.mask_dir_name),
|
||||
self.root,
|
||||
md5=self.mask_md5s[self.sensor.split("_")[0]][self.product]
|
||||
if self.checksum
|
||||
else None,
|
||||
md5=(
|
||||
self.mask_md5s[self.sensor.split("_")[0]][self.product]
|
||||
if self.checksum
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
def _extract(self) -> None:
|
||||
|
|
|
@ -219,9 +219,11 @@ class _LightWeightDecoder(Module):
|
|||
),
|
||||
BatchNorm2d(out_channels),
|
||||
ReLU(inplace=True),
|
||||
UpsamplingBilinear2d(scale_factor=2)
|
||||
if num_upsample != 0
|
||||
else Identity(),
|
||||
(
|
||||
UpsamplingBilinear2d(scale_factor=2)
|
||||
if num_upsample != 0
|
||||
else Identity()
|
||||
),
|
||||
)
|
||||
for idx in range(num_layers)
|
||||
]
|
||||
|
|
|
@ -12,13 +12,11 @@ from ..datasets import BoundingBox
|
|||
|
||||
|
||||
@overload
|
||||
def _to_tuple(value: Union[tuple[int, int], int]) -> tuple[int, int]:
|
||||
...
|
||||
def _to_tuple(value: Union[tuple[int, int], int]) -> tuple[int, int]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def _to_tuple(value: Union[tuple[float, float], float]) -> tuple[float, float]:
|
||||
...
|
||||
def _to_tuple(value: Union[tuple[float, float], float]) -> tuple[float, float]: ...
|
||||
|
||||
|
||||
def _to_tuple(value: Union[tuple[float, float], float]) -> tuple[float, float]:
|
||||
|
|
Загрузка…
Ссылка в новой задаче