* add bigearthnet dataset

* add dummy data for bigearthnet tests

* add bigearthnet unit tests

* updated bigearthnet dataset and tests with s1 imagery

* add bigearthnet to docs

* mypy fixes

* updated docstrings
This commit is contained in:
isaac 2021-10-17 11:19:57 -05:00 коммит произвёл GitHub
Родитель c0afbf9b6b
Коммит 7d1ff80649
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
6 изменённых файлов: 500 добавлений и 0 удалений

Просмотреть файл

@ -80,6 +80,11 @@ Smallholder Cashew Plantations in Benin
.. autoclass:: BeninSmallHolderCashews
BigEarthNet
^^^^^^^^^^^
.. autoclass:: BigEarthNet
Cars Overhead With Context (COWC)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Двоичные данные
tests/data/bigearthnet/BigEarthNet-S1-v1.0.tar.gz Normal file

Двоичный файл не отображается.

Двоичные данные
tests/data/bigearthnet/BigEarthNet-S2-v1.0.tar.gz Normal file

Двоичный файл не отображается.

Просмотреть файл

@ -0,0 +1,113 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import os
import shutil
from pathlib import Path
from typing import Generator
import pytest
import torch
import torch.nn as nn
from _pytest.fixtures import SubRequest
from _pytest.monkeypatch import MonkeyPatch
import torchgeo.datasets.utils
from torchgeo.datasets import BigEarthNet
def download_url(url: str, root: str, *args: str, **kwargs: str) -> None:
shutil.copy(url, root)
class TestBigEarthNet:
@pytest.fixture(params=["all", "s1", "s2"])
def dataset(
self,
monkeypatch: Generator[MonkeyPatch, None, None],
tmp_path: Path,
request: SubRequest,
) -> BigEarthNet:
monkeypatch.setattr( # type: ignore[attr-defined]
torchgeo.datasets.bigearthnet, "download_url", download_url
)
data_dir = os.path.join("tests", "data", "bigearthnet")
metadata = {
"s1": {
"url": os.path.join(data_dir, "BigEarthNet-S1-v1.0.tar.gz"),
"md5": "5a64e9ce38deb036a435a7b59494924c",
"filename": "BigEarthNet-S1-v1.0.tar.gz",
"directory": "BigEarthNet-S1-v1.0",
},
"s2": {
"url": os.path.join(data_dir, "BigEarthNet-S2-v1.0.tar.gz"),
"md5": "ef5f41129b8308ca178b04d7538dbacf",
"filename": "BigEarthNet-S2-v1.0.tar.gz",
"directory": "BigEarthNet-v1.0",
},
}
monkeypatch.setattr( # type: ignore[attr-defined]
BigEarthNet, "metadata", metadata
)
bands = request.param
root = str(tmp_path)
transforms = nn.Identity() # type: ignore[attr-defined]
return BigEarthNet(root, bands, transforms, download=True, checksum=True)
def test_getitem(self, dataset: BigEarthNet) -> None:
x = dataset[0]
assert isinstance(x, dict)
assert isinstance(x["image"], torch.Tensor)
assert isinstance(x["label"], torch.Tensor)
assert x["label"].shape == (43,)
assert x["image"].dtype == torch.int32 # type: ignore[attr-defined]
assert x["label"].dtype == torch.int64 # type: ignore[attr-defined]
if dataset.bands == "all":
assert x["image"].shape == (14, 120, 120)
elif dataset.bands == "s1":
assert x["image"].shape == (2, 120, 120)
else:
assert x["image"].shape == (12, 120, 120)
def test_len(self, dataset: BigEarthNet) -> None:
assert len(dataset) == 2
def test_already_downloaded(self, dataset: BigEarthNet, tmp_path: Path) -> None:
BigEarthNet(root=str(tmp_path), bands=dataset.bands, download=True)
def test_already_downloaded_not_extracted(
self, dataset: BigEarthNet, tmp_path: Path
) -> None:
if dataset.bands == "all":
shutil.rmtree(
os.path.join(dataset.root, dataset.metadata["s1"]["directory"])
)
shutil.rmtree(
os.path.join(dataset.root, dataset.metadata["s2"]["directory"])
)
download_url(dataset.metadata["s1"]["url"], root=str(tmp_path))
download_url(dataset.metadata["s2"]["url"], root=str(tmp_path))
elif dataset.bands == "s1":
shutil.rmtree(
os.path.join(dataset.root, dataset.metadata["s1"]["directory"])
)
download_url(dataset.metadata["s1"]["url"], root=str(tmp_path))
else:
shutil.rmtree(
os.path.join(dataset.root, dataset.metadata["s2"]["directory"])
)
download_url(dataset.metadata["s2"]["url"], root=str(tmp_path))
BigEarthNet(
root=str(tmp_path),
bands=dataset.bands,
download=False,
)
def test_not_downloaded(self, tmp_path: Path) -> None:
err = "Dataset not found in `root` directory and `download=False`, "
"either specify a different `root` directory or use `download=True` "
"to automaticaly download the dataset."
with pytest.raises(RuntimeError, match=err):
BigEarthNet(str(tmp_path))

Просмотреть файл

@ -5,6 +5,7 @@
from .advance import ADVANCE
from .benin_cashews import BeninSmallHolderCashews
from .bigearthnet import BigEarthNet
from .cbf import CanadianBuildingFootprints
from .cdl import CDL
from .chesapeake import (
@ -93,6 +94,7 @@ __all__ = (
# VisionDataset
"ADVANCE",
"BeninSmallHolderCashews",
"BigEarthNet",
"COWC",
"COWCCounting",
"COWCDetection",

Просмотреть файл

@ -0,0 +1,380 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""BigEarthNet dataset."""
import glob
import json
import os
from typing import Callable, Dict, List, Optional
import numpy as np
import rasterio
import torch
from rasterio.enums import Resampling
from torch import Tensor
from .geo import VisionDataset
from .utils import download_url, extract_archive
def sort_bands(x: str) -> str:
"""Sort Sentinel-2 band files in the correct order."""
x = os.path.basename(x).split("_")[-1]
x = os.path.splitext(x)[0]
if x == "B8A":
x = "B08A"
return x
class BigEarthNet(VisionDataset):
"""BigEarthNet dataset.
The `BigEarthNet <http://bigearth.net/>`_
dataset is a dataset for multilabel remote sensing image scene classification.
Dataset features:
* 590,326 patches from 125 Sentinel-1 and Sentinel-2 tiles
* Imagery from tiles in Europe between Jun 2017 - May 2018
* 12 spectral bands with 10-60 m per pixel resolution (base 120x120 px)
* 2 synthetic aperture radar bands (120x120 px)
* 43 scene classes from the 2018 CORINE Land Cover database (CLC 2018)
Dataset format:
* images are composed of multiple single channel geotiffs
* labels are multiclass, stored in a single json file per image
* mapping of Sentinel-1 to Sentinel-2 patches are within Sentinel-1 json files
* Sentinel-1 bands: (VV, VH)
* Sentinel-2 bands: (B01, B02, B03, B04, B05, B06, B07, B08, B8A, B09, B11, B12)
* All bands: (VV, VH, B01, B02, B03, B04, B05, B06, B07, B08, B8A, B09, B11, B12)
* Sentinel-2 bands are of different spatial resolutions and upsampled to 10m
Dataset classes:
0. Agro-forestry areas
1. Airports
2. Annual crops associated with permanent crops
3. Bare rock
4. Beaches, dunes, sands
5. Broad-leaved forest
6. Burnt areas
7. Coastal lagoons
8. Complex cultivation patterns
9. Coniferous forest
10. Construction sites
11. Continuous urban fabric
12. Discontinuous urban fabric
13. Dump sites
14. Estuaries
15. Fruit trees and berry plantations
16. Green urban areas
17. Industrial or commercial units
18. Inland marshes
19. Intertidal flats
20. Land principally occupied by agriculture, with
significant areas of natural vegetation
21. Mineral extraction sites
22. Mixed forest
23. Moors and heathland
24. Natural grassland
25. Non-irrigated arable land
26. Olive groves
27. Pastures
28. Peatbogs
29. Permanently irrigated land
30. Port areas
31. Rice fields
32. Road and rail networks and associated land
33. Salines
34. Salt marshes
35. Sclerophyllous vegetation
36. Sea and ocean
37. Sparsely vegetated areas
38. Sport and leisure facilities
39. Transitional woodland/shrub
40. Vineyards
41. Water bodies
42. Water courses
If you use this dataset in your research, please cite the following paper:
* https://doi.org/10.1109/IGARSS.2019.8900532
"""
classes = [
"Agro-forestry areas",
"Airports",
"Annual crops associated with permanent crops",
"Bare rock",
"Beaches, dunes, sands",
"Broad-leaved forest",
"Burnt areas",
"Coastal lagoons",
"Complex cultivation patterns",
"Coniferous forest",
"Construction sites",
"Continuous urban fabric",
"Discontinuous urban fabric",
"Dump sites",
"Estuaries",
"Fruit trees and berry plantations",
"Green urban areas",
"Industrial or commercial units",
"Inland marshes",
"Intertidal flats",
"Land principally occupied by agriculture, with significant areas of "
"natural vegetation",
"Mineral extraction sites",
"Mixed forest",
"Moors and heathland",
"Natural grassland",
"Non-irrigated arable land",
"Olive groves",
"Pastures",
"Peatbogs",
"Permanently irrigated land",
"Port areas",
"Rice fields",
"Road and rail networks and associated land",
"Salines",
"Salt marshes",
"Sclerophyllous vegetation",
"Sea and ocean",
"Sparsely vegetated areas",
"Sport and leisure facilities",
"Transitional woodland/shrub",
"Vineyards",
"Water bodies",
"Water courses",
]
metadata = {
"s1": {
"url": "http://bigearth.net/downloads/BigEarthNet-S1-v1.0.tar.gz",
"md5": "5a64e9ce38deb036a435a7b59494924c",
"filename": "BigEarthNet-S1-v1.0.tar.gz",
"directory": "BigEarthNet-S1-v1.0",
},
"s2": {
"url": "http://bigearth.net/downloads/BigEarthNet-S2-v1.0.tar.gz",
"md5": "5a64e9ce38deb036a435a7b59494924c",
"filename": "BigEarthNet-S2-v1.0.tar.gz",
"directory": "BigEarthNet-v1.0",
},
}
image_size = (120, 120)
def __init__(
self,
root: str = "data",
bands: str = "all",
transforms: Optional[Callable[[Dict[str, Tensor]], Dict[str, Tensor]]] = None,
download: bool = False,
checksum: bool = False,
) -> None:
"""Initialize a new BigEarthNet dataset instance.
Args:
root: root directory where dataset can be found
bands: load Sentinel-1 bands, Sentinel-2, or both. one of {s1, s2, all}
transforms: a function/transform that takes input sample and its target as
entry and returns a transformed version
download: if True, download dataset and store it in the root directory
checksum: if True, check the MD5 of the downloaded files (may be slow)
"""
assert bands in ["s1", "s2", "all"]
self.root = root
self.bands = bands
self.transforms = transforms
self.download = download
self.checksum = checksum
self.class2idx = {c: i for i, c in enumerate(self.classes)}
self.num_classes = len(self.classes)
self._verify()
if bands == "s2":
self.files = glob.glob(
os.path.join(self.root, self.metadata["s2"]["directory"], "*")
)
else:
self.files = glob.glob(
os.path.join(self.root, self.metadata["s1"]["directory"], "*")
)
def __getitem__(self, index: int) -> Dict[str, Tensor]:
"""Return an index within the dataset.
Args:
index: index to return
Returns:
data and label at that index
"""
image = self._load_image(index)
label = self._load_target(index)
sample: Dict[str, Tensor] = {
"image": image,
"label": label,
}
if self.transforms is not None:
sample = self.transforms(sample)
return sample
def __len__(self) -> int:
"""Return the number of data points in the dataset.
Returns:
length of the dataset
"""
return len(self.files)
def _load_paths(self, index: int) -> List[str]:
"""Load paths to band files.
Args:
index: index to return
Returns:
list of file paths
"""
folder = self.files[index]
paths = glob.glob(os.path.join(folder, "*.tif"))
# S1->S2 patch mapping is in S1 patch metadata json file
if self.bands == "all":
paths = sorted(paths)
metadata_path = glob.glob(os.path.join(folder, "*.json"))[0]
with open(metadata_path, "r") as f:
name_s2 = json.load(f)["corresponding_s2_patch"]
folder_s2 = os.path.join(
self.root, self.metadata["s2"]["directory"], name_s2
)
paths_s2 = glob.glob(os.path.join(folder_s2, "*.tif"))
paths_s2 = sorted(paths_s2, key=sort_bands)
paths.extend(paths_s2)
elif self.bands == "s1":
paths = sorted(paths)
else:
paths = sorted(paths, key=sort_bands)
return paths
def _load_image(self, index: int) -> Tensor:
"""Load a single image.
Args:
index: index to return
Returns:
the raster image or target
"""
paths = self._load_paths(index)
images = []
for path in paths:
# Bands are of different spatial resolutions
# Resample to (120, 120)
with rasterio.open(path) as dataset:
array = dataset.read(
indexes=1,
out_shape=self.image_size,
out_dtype="int32",
resampling=Resampling.bilinear,
)
images.append(array)
arrays = np.stack(images, axis=0)
tensor: Tensor = torch.from_numpy(arrays) # type: ignore[attr-defined]
return tensor
def _load_target(self, index: int) -> Tensor:
"""Load the target mask for a single image.
Args:
index: index to return
Returns:
the target label
"""
folder = self.files[index]
path = glob.glob(os.path.join(folder, "*.json"))[0]
with open(path, "r") as f:
labels = json.load(f)["labels"]
indices = [self.class2idx[label] for label in labels]
target: Tensor = torch.zeros( # type: ignore[attr-defined]
self.num_classes, dtype=torch.long # type: ignore[attr-defined]
)
target[indices] = 1
return target
def _verify(self) -> None:
"""Verify the integrity of the dataset.
Raises:
RuntimeError: if ``download=False`` but dataset is missing or checksum fails
"""
keys = ["s1", "s2"] if self.bands == "all" else [self.bands]
urls = [self.metadata[k]["url"] for k in keys]
md5s = [self.metadata[k]["md5"] for k in keys]
filenames = [self.metadata[k]["filename"] for k in keys]
directories = [self.metadata[k]["directory"] for k in keys]
# Check if the files already exist
exists = [
os.path.exists(os.path.join(self.root, directory))
for directory in directories
]
if all(exists):
return
# Check if zip file already exists (if so then extract)
exists = []
for filename in filenames:
filepath = os.path.join(self.root, filename)
if os.path.exists(filepath):
exists.append(True)
self._extract(filepath)
else:
exists.append(False)
if all(exists):
return
# Check if the user requested to download the dataset
if not self.download:
raise RuntimeError(
"Dataset not found in `root` directory and `download=False`, "
"either specify a different `root` directory or use `download=True` "
"to automaticaly download the dataset."
)
# Download and extract the dataset
for url, filename, md5 in zip(urls, filenames, md5s):
self._download(url, filename, md5)
filepath = os.path.join(self.root, filename)
self._extract(filepath)
def _download(self, url: str, filename: str, md5: str) -> None:
"""Download the dataset.
Args:
url: url to download file
filename: output filename to write downloaded file
md5: md5 of downloaded file
"""
download_url(
url,
self.root,
filename=filename,
md5=md5 if self.checksum else None,
)
def _extract(self, filepath: str) -> None:
"""Extract the dataset.
Args:
filepath: path to file to be extracted
"""
extract_archive(filepath)