Bump pytorch-lightning from 1.6.5 to 1.7.0 in /requirements (#697)

* Bump pytorch-lightning from 1.6.5 to 1.7.0 in /requirements

Bumps [pytorch-lightning](https://github.com/Lightning-AI/lightning) from 1.6.5 to 1.7.0.
- [Release notes](https://github.com/Lightning-AI/lightning/releases)
- [Commits](https://github.com/Lightning-AI/lightning/compare/1.6.5...pl/1.7.0)

---
updated-dependencies:
- dependency-name: pytorch-lightning
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>

* Remove protobuf restrictions

* LightningModule was moved

* Mypy fixes

* Ensure same behavior

* Fix docs

* Silence warnings

* Change error message location

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
This commit is contained in:
dependabot[bot] 2022-08-02 16:39:10 -07:00 коммит произвёл Adam J. Stewart
Родитель 6d40b08795
Коммит bc23e21009
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: C66C0675661156FC
31 изменённых файлов: 35 добавлений и 36 удалений

2
.github/dependabot.yml поставляемый
Просмотреть файл

@ -7,7 +7,5 @@ updates:
# Allow up to 2 open pull requests at a time
open-pull-requests-limit: 2
ignore:
# torch, tensorboard require protobuf < 4
- dependency-name: "protobuf"
# segmentation-models-pytorch requires older timm, can't update
- dependency-name: "timm"

Просмотреть файл

@ -60,6 +60,7 @@ nitpick_ignore = [
("py:class", ".."),
# TODO: can't figure out why this isn't found
("py:class", "LightningDataModule"),
("py:class", "pytorch_lightning.core.module.LightningModule"),
# Undocumented class
("py:class", "torchvision.models.resnet.ResNet"),
("py:class", "segmentation_models_pytorch.base.model.SegmentationModel"),

Просмотреть файл

@ -89,8 +89,8 @@ def main(args: argparse.Namespace) -> None:
trainer = pl.Trainer(
gpus=[args.device] if torch.cuda.is_available() else None,
logger=False,
progress_bar_refresh_rate=0,
checkpoint_callback=False,
enable_progress_bar=False,
enable_checkpointing=False,
)
for experiment_dir in os.listdir(args.input_dir):

Просмотреть файл

@ -71,6 +71,8 @@ filterwarnings = [
# https://github.com/PyTorchLightning/pytorch-lightning/issues/13256
# https://github.com/PyTorchLightning/pytorch-lightning/pull/13261
"ignore:torch.distributed._sharded_tensor will be deprecated:DeprecationWarning:torch.distributed._sharded_tensor",
# https://github.com/Lightning-AI/lightning/issues/13989
"ignore:SelectableGroups dict interface is deprecated. Use select.:DeprecationWarning:pytorch_lightning.trainer.connectors.callback_connector",
# https://github.com/rasterio/rasterio/issues/1742
# https://github.com/rasterio/rasterio/pull/1753
"ignore:Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated:DeprecationWarning:rasterio.crs",

Просмотреть файл

@ -11,7 +11,6 @@ numpy==1.21.6;python_version=='3.7'
omegaconf==2.2.2
packaging==21.3
pillow==9.2.0
protobuf==3.20.1
pyproj==3.3.1;python_version>='3.8'
pyproj==3.2.0;python_version=='3.7'
pytorch-lightning==1.6.4

Просмотреть файл

@ -10,9 +10,8 @@ numpy==1.23.0;python_version>='3.8'
omegaconf==2.2.2
packaging==21.3
pillow==9.2.0
protobuf==3.20.1
pyproj==3.3.1;python_version>='3.8'
pytorch-lightning==1.6.4
pytorch-lightning==1.7.0
rasterio==1.3.0;python_version>='3.8'
rtree==1.0.0
scikit-learn==1.1.1;python_version>='3.8'

Просмотреть файл

@ -90,7 +90,7 @@ class BigEarthNetDataModule(pl.LightningDataModule):
batch_size: The batch size to use in all created DataLoaders
num_workers: The number of workers to use in all created DataLoaders
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.bands = bands
self.num_classes = num_classes

Просмотреть файл

@ -64,7 +64,7 @@ class ChesapeakeCVPRDataModule(LightningDataModule):
Raises:
ValueError: if ``use_prior_labels`` is used with ``class_set==7``
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
for state in train_splits + val_splits + test_splits:
assert state in ChesapeakeCVPR.splits
assert class_set in [5, 7]

Просмотреть файл

@ -36,7 +36,7 @@ class COWCCountingDataModule(pl.LightningDataModule):
batch_size: The batch size to use in all created DataLoaders
num_workers: The number of workers to use in all created DataLoaders
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.seed = seed
self.batch_size = batch_size

Просмотреть файл

@ -44,7 +44,7 @@ class CycloneDataModule(pl.LightningDataModule):
api_key: The RadiantEarth MLHub API key to use if the dataset needs to be
downloaded
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.seed = seed
self.batch_size = batch_size

Просмотреть файл

@ -36,7 +36,7 @@ class DeepGlobeLandCoverDataModule(pl.LightningDataModule):
num_workers: The number of workers to use in all created DataLoaders
val_split_pct: What percentage of the dataset to use as a validation set
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -48,7 +48,7 @@ class ETCI2021DataModule(pl.LightningDataModule):
batch_size: The batch size to use in all created DataLoaders
num_workers: The number of workers to use in all created DataLoaders
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.seed = seed
self.batch_size = batch_size

Просмотреть файл

@ -68,7 +68,7 @@ class EuroSATDataModule(pl.LightningDataModule):
batch_size: The batch size to use in all created DataLoaders
num_workers: The number of workers to use in all created DataLoaders
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -56,7 +56,7 @@ class FAIR1MDataModule(pl.LightningDataModule):
val_split_pct: What percentage of the dataset to use as a validation set
test_split_pct: What percentage of the dataset to use as a test set
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -65,7 +65,7 @@ class InriaAerialImageLabelingDataModule(pl.LightningDataModule):
num_patches_per_tile: Number of random patches per sample
predict_on: Directory/Dataset of images to run inference on
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -33,7 +33,7 @@ class LandCoverAIDataModule(pl.LightningDataModule):
batch_size: The batch size to use in all created DataLoaders
num_workers: The number of workers to use in all created DataLoaders
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -39,7 +39,7 @@ class LoveDADataModule(pl.LightningDataModule):
batch_size: The batch size to use in all created DataLoaders
num_workers: The number of workers to use in all created DataLoaders
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.scene = scene
self.batch_size = batch_size

Просмотреть файл

@ -46,7 +46,7 @@ class NAIPChesapeakeDataModule(pl.LightningDataModule):
num_workers: The number of workers to use in all created DataLoaders
patch_size: size of patches to sample
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.naip_root_dir = naip_root_dir
self.chesapeake_root_dir = chesapeake_root_dir
self.batch_size = batch_size

Просмотреть файл

@ -57,7 +57,7 @@ class NASAMarineDebrisDataModule(pl.LightningDataModule):
val_split_pct: What percentage of the dataset to use as a validation set
test_split_pct: What percentage of the dataset to use as a test set
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -87,7 +87,7 @@ class OSCDDataModule(pl.LightningDataModule):
num_patches_per_tile: number of random patches per sample
pad_size: size to pad images to during val/test steps
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.bands = bands
self.train_batch_size = train_batch_size

Просмотреть файл

@ -37,7 +37,7 @@ class Potsdam2DDataModule(pl.LightningDataModule):
num_workers: The number of workers to use in all created DataLoaders
val_split_pct: What percentage of the dataset to use as a validation set
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -38,7 +38,7 @@ class RESISC45DataModule(pl.LightningDataModule):
batch_size: The batch size to use in all created DataLoaders
num_workers: The number of workers to use in all created DataLoaders
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -72,7 +72,7 @@ class SEN12MSDataModule(pl.LightningDataModule):
batch_size: The batch size to use in all created DataLoaders
num_workers: The number of workers to use in all created DataLoaders
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
assert band_set in SEN12MS.BAND_SETS.keys()
self.root_dir = root_dir

Просмотреть файл

@ -75,7 +75,7 @@ class So2SatDataModule(pl.LightningDataModule):
unsupervised_mode: Makes the train dataloader return imagery from the train,
val, and test sets
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -34,7 +34,7 @@ class UCMercedDataModule(pl.LightningDataModule):
batch_size: The batch size to use in all created DataLoaders
num_workers: The number of workers to use in all created DataLoaders
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -37,7 +37,7 @@ class Vaihingen2DDataModule(pl.LightningDataModule):
num_workers: The number of workers to use in all created DataLoaders
val_split_pct: What percentage of the dataset to use as a validation set
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -37,7 +37,7 @@ class XView2DataModule(pl.LightningDataModule):
num_workers: The number of workers to use in all created DataLoaders
val_split_pct: What percentage of the dataset to use as a validation set
"""
super().__init__() # type: ignore[no-untyped-call]
super().__init__()
self.root_dir = root_dir
self.batch_size = batch_size
self.num_workers = num_workers

Просмотреть файл

@ -6,6 +6,7 @@
import random
from typing import Any, Callable, Dict, Optional, Tuple, cast
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
import torchvision
@ -13,7 +14,6 @@ from kornia import augmentation as K
from kornia import filters
from kornia.geometry import transform as KorniaTransform
from packaging.version import parse
from pytorch_lightning.core.lightning import LightningModule
from torch import Tensor, optim
from torch.autograd import Variable
from torch.nn.modules import BatchNorm1d, Conv2d, Linear, Module, ReLU, Sequential
@ -304,7 +304,7 @@ class BYOL(Module):
pt.data = self.beta * pt.data + (1 - self.beta) * p.data
class BYOLTask(LightningModule):
class BYOLTask(pl.LightningModule):
"""Class for pre-training any PyTorch model using BYOL."""
def config_task(self) -> None:

Просмотреть файл

@ -189,7 +189,7 @@ class ClassificationTask(pl.LightningModule):
if batch_idx < 10:
try:
datamodule = self.trainer.datamodule # type: ignore[union-attr]
datamodule = self.trainer.datamodule # type: ignore[attr-defined]
batch["prediction"] = y_hat_hard
for key in ["image", "label", "prediction"]:
batch[key] = batch[key].cpu()
@ -358,7 +358,7 @@ class MultiLabelClassificationTask(ClassificationTask):
if batch_idx < 10:
try:
datamodule = self.trainer.datamodule # type: ignore[union-attr]
datamodule = self.trainer.datamodule # type: ignore[attr-defined]
batch["prediction"] = y_hat_hard
for key in ["image", "label", "prediction"]:
batch[key] = batch[key].cpu()

Просмотреть файл

@ -127,7 +127,7 @@ class RegressionTask(pl.LightningModule):
if batch_idx < 10:
try:
datamodule = self.trainer.datamodule # type: ignore[union-attr]
datamodule = self.trainer.datamodule # type: ignore[attr-defined]
batch["prediction"] = y_hat
for key in ["image", "label", "prediction"]:
batch[key] = batch[key].cpu()

Просмотреть файл

@ -6,10 +6,10 @@
import warnings
from typing import Any, Dict, cast
import pytorch_lightning as pl
import segmentation_models_pytorch as smp
import torch
import torch.nn as nn
from pytorch_lightning.core.lightning import LightningModule
from torch import Tensor
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
@ -23,7 +23,7 @@ from ..models import FCN
DataLoader.__module__ = "torch.utils.data"
class SemanticSegmentationTask(LightningModule):
class SemanticSegmentationTask(pl.LightningModule):
"""LightningModule for semantic segmentation of images."""
def config_task(self) -> None:
@ -184,7 +184,7 @@ class SemanticSegmentationTask(LightningModule):
if batch_idx < 10:
try:
datamodule = self.trainer.datamodule # type: ignore[union-attr]
datamodule = self.trainer.datamodule # type: ignore[attr-defined]
batch["prediction"] = y_hat_hard
for key in ["image", "mask", "prediction"]:
batch[key] = batch[key].cpu()