зеркало из https://github.com/microsoft/torchgeo.git
Move conf files to experiment subdirs (#1660)
This commit is contained in:
Родитель
6441c83600
Коммит
c37fbaff6f
|
@ -1,22 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: MultiLabelClassificationTask
|
||||
init_args:
|
||||
loss: "bce"
|
||||
model: "resnet18"
|
||||
lr: 1e-3
|
||||
patience: 6
|
||||
weights: null
|
||||
in_channels: 14
|
||||
num_classes: 19
|
||||
data:
|
||||
class_path: BigEarthNetDataModule
|
||||
init_args:
|
||||
batch_size: 128
|
||||
num_workers: 4
|
||||
dict_kwargs:
|
||||
root: "data/bigearthnet"
|
||||
bands: "all"
|
||||
num_classes: ${model.init_args.num_classes}
|
|
@ -1,19 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: RegressionTask
|
||||
init_args:
|
||||
model: "resnet18"
|
||||
weights: null
|
||||
num_outputs: 1
|
||||
in_channels: 3
|
||||
lr: 1e-3
|
||||
patience: 2
|
||||
data:
|
||||
class_path: TropicalCycloneDataModule
|
||||
init_args:
|
||||
batch_size: 32
|
||||
num_workers: 4
|
||||
dict_kwargs:
|
||||
root: "data/cyclone"
|
|
@ -1,25 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: SemanticSegmentationTask
|
||||
init_args:
|
||||
loss: "ce"
|
||||
model: "unet"
|
||||
backbone: "resnet18"
|
||||
weights: null
|
||||
lr: 1e-3
|
||||
patience: 6
|
||||
in_channels: 3
|
||||
num_classes: 7
|
||||
num_filters: 1
|
||||
ignore_index: null
|
||||
data:
|
||||
class_path: DeepGlobeLandCoverDataModule
|
||||
init_args:
|
||||
batch_size: 1
|
||||
patch_size: 64
|
||||
val_split_pct: 0.5
|
||||
num_workers: 0
|
||||
dict_kwargs:
|
||||
root: "data/deepglobelandcover"
|
|
@ -1,25 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: SemanticSegmentationTask
|
||||
init_args:
|
||||
loss: "ce"
|
||||
model: "unet"
|
||||
backbone: "resnet18"
|
||||
weights: null
|
||||
lr: 1e-3
|
||||
patience: 6
|
||||
in_channels: 3
|
||||
num_classes: 16
|
||||
num_filters: 1
|
||||
ignore_index: null
|
||||
data:
|
||||
class_path: GID15DataModule
|
||||
init_args:
|
||||
batch_size: 1
|
||||
patch_size: 64
|
||||
val_split_pct: 0.5
|
||||
num_workers: 0
|
||||
dict_kwargs:
|
||||
root: "data/gid15"
|
|
@ -1,23 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: SemanticSegmentationTask
|
||||
init_args:
|
||||
loss: "ce"
|
||||
model: "unet"
|
||||
backbone: "resnet18"
|
||||
weights: true
|
||||
lr: 1e-3
|
||||
patience: 6
|
||||
in_channels: 3
|
||||
num_classes: 2
|
||||
ignore_index: null
|
||||
data:
|
||||
class_path: InriaAerialImageLabelingDataModule
|
||||
init_args:
|
||||
batch_size: 1
|
||||
patch_size: 512
|
||||
num_workers: 32
|
||||
dict_kwargs:
|
||||
root: "data/inria"
|
|
@ -1,25 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: SemanticSegmentationTask
|
||||
init_args:
|
||||
loss: "ce"
|
||||
model: "deeplabv3+"
|
||||
backbone: "resnet34"
|
||||
weights: true
|
||||
lr: 1e-3
|
||||
patience: 2
|
||||
in_channels: 4
|
||||
num_classes: 14
|
||||
num_filters: 64
|
||||
ignore_index: null
|
||||
data:
|
||||
class_path: NAIPChesapeakeDataModule
|
||||
init_args:
|
||||
batch_size: 32
|
||||
num_workers: 4
|
||||
patch_size: 32
|
||||
dict_kwargs:
|
||||
naip_paths: "data/naip"
|
||||
chesapeake_paths: "data/chesapeake/BAYWIDE"
|
|
@ -1,19 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: ObjectDetectionTask
|
||||
init_args:
|
||||
model: "faster-rcnn"
|
||||
backbone: "resnet50"
|
||||
num_classes: 2
|
||||
lr: 1.2e-4
|
||||
patience: 6
|
||||
data:
|
||||
class_path: NASAMarineDebrisDataModule
|
||||
init_args:
|
||||
batch_size: 4
|
||||
num_workers: 6
|
||||
val_split_pct: 0.2
|
||||
dict_kwargs:
|
||||
root: "data/nasamr/nasa_marine_debris"
|
|
@ -1,25 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: SemanticSegmentationTask
|
||||
init_args:
|
||||
loss: "ce"
|
||||
model: "unet"
|
||||
backbone: "resnet18"
|
||||
weights: null
|
||||
lr: 1e-3
|
||||
patience: 6
|
||||
in_channels: 4
|
||||
num_classes: 6
|
||||
num_filters: 1
|
||||
ignore_index: null
|
||||
data:
|
||||
class_path: Potsdam2DDataModule
|
||||
init_args:
|
||||
batch_size: 1
|
||||
patch_size: 64
|
||||
val_split_pct: 0.5
|
||||
num_workers: 0
|
||||
dict_kwargs:
|
||||
root: "data/potsdam"
|
|
@ -1,22 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: BYOLTask
|
||||
init_args:
|
||||
in_channels: 12
|
||||
backbone: "resnet18"
|
||||
weights: True
|
||||
lr: 1e-3
|
||||
patience: 6
|
||||
optimizer: "Adam"
|
||||
data:
|
||||
class_path: SeasonalContrastS2DataModule
|
||||
init_args:
|
||||
batch_size: 64
|
||||
num_workers: 16
|
||||
dict_kwargs:
|
||||
root: "data/seco"
|
||||
version: "100k"
|
||||
seasons: 2
|
||||
bands: ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B11", "B12"]
|
|
@ -1,23 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: SemanticSegmentationTask
|
||||
init_args:
|
||||
loss: "ce"
|
||||
model: "unet"
|
||||
backbone: "resnet18"
|
||||
weights: null
|
||||
lr: 1e-3
|
||||
patience: 2
|
||||
in_channels: 15
|
||||
num_classes: 11
|
||||
ignore_index: null
|
||||
data:
|
||||
class_path: SEN12MSDataModule
|
||||
init_args:
|
||||
batch_size: 32
|
||||
num_workers: 4
|
||||
dict_kwargs:
|
||||
root: "data/sen12ms"
|
||||
band_set: "all"
|
|
@ -1,22 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: SemanticSegmentationTask
|
||||
init_args:
|
||||
loss: "ce"
|
||||
model: "unet"
|
||||
backbone: "resnet18"
|
||||
weights: true
|
||||
lr: 1e-3
|
||||
patience: 6
|
||||
in_channels: 3
|
||||
num_classes: 3
|
||||
ignore_index: 0
|
||||
data:
|
||||
class_path: SpaceNet1DataModule
|
||||
init_args:
|
||||
batch_size: 32
|
||||
num_workers: 4
|
||||
dict_kwargs:
|
||||
root: "data/spacenet"
|
|
@ -1,25 +0,0 @@
|
|||
trainer:
|
||||
min_epochs: 15
|
||||
max_epochs: 40
|
||||
model:
|
||||
class_path: SemanticSegmentationTask
|
||||
init_args:
|
||||
loss: "ce"
|
||||
model: "unet"
|
||||
backbone: "resnet18"
|
||||
weights: null
|
||||
lr: 1e-3
|
||||
patience: 6
|
||||
in_channels: 3
|
||||
num_classes: 7
|
||||
num_filters: 1
|
||||
ignore_index: null
|
||||
data:
|
||||
class_path: Vaihingen2DDataModule
|
||||
init_args:
|
||||
batch_size: 1
|
||||
patch_size: 64
|
||||
val_split_pct: 0.5
|
||||
num_workers: 0
|
||||
dict_kwargs:
|
||||
root: "data/vaihingen"
|
|
@ -89,10 +89,10 @@ This will create patches of NLCD and CDL data with the same locations and dimens
|
|||
Using either the newly created datasets or after downloading the datasets from Hugging Face, you can run each experiment using:
|
||||
|
||||
```console
|
||||
$ python3 ../../../train.py config_file=...
|
||||
$ torchgeo --config *.yaml
|
||||
```
|
||||
|
||||
The config files to be passed can be found in the `../../../conf/` directory. Feel free to tweak any hyperparameters you see in these files. The default values are the optimal hyperparameters we found.
|
||||
The config files to be passed can be found in the `conf/` directory. Feel free to tweak any hyperparameters you see in these files. The default values are the optimal hyperparameters we found.
|
||||
|
||||
## Plotting
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче