* 🆕 Added CaBuAr dataset

* 🆕 Added CaBuAr datamodule

* 🔨 Added CaBuAr datamodule test

* 🔨 Corrected CaBuAr typing and datamodule test

* 🔨 updated test, corrected docs, minor fixes to dataset and datamodule

* 🔨 CaBuAr test fixes
This commit is contained in:
Daniele Rege Cambrin 2024-08-28 15:57:58 +02:00 коммит произвёл GitHub
Родитель 042b75ea9c
Коммит ccc314cd88
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
13 изменённых файлов: 564 добавлений и 1 удалений

Просмотреть файл

@ -57,6 +57,11 @@ BigEarthNet
.. autoclass:: BigEarthNetDataModule .. autoclass:: BigEarthNetDataModule
CaBuAr
^^^^^^
.. autoclass:: CaBuArDataModule
ChaBuD ChaBuD
^^^^^^ ^^^^^^

Просмотреть файл

@ -217,6 +217,11 @@ BioMassters
.. autoclass:: BioMassters .. autoclass:: BioMassters
CaBuAr
^^^^^^
.. autoclass:: CaBuAr
ChaBuD ChaBuD
^^^^^^ ^^^^^^

Просмотреть файл

@ -3,6 +3,7 @@ Dataset,Task,Source,License,# Samples,# Classes,Size (px),Resolution (m),Bands
`Benin Cashew Plantations`_,S,Airbus Pléiades,"CC-BY-4.0",70,6,"1,122x1,186",10,MSI `Benin Cashew Plantations`_,S,Airbus Pléiades,"CC-BY-4.0",70,6,"1,122x1,186",10,MSI
`BigEarthNet`_,C,Sentinel-1/2,"CDLA-Permissive-1.0","590,326",19--43,120x120,10,"SAR, MSI" `BigEarthNet`_,C,Sentinel-1/2,"CDLA-Permissive-1.0","590,326",19--43,120x120,10,"SAR, MSI"
`BioMassters`_,R,Sentinel-1/2 and Lidar,"CC-BY-4.0",,,256x256, 10, "SAR, MSI" `BioMassters`_,R,Sentinel-1/2 and Lidar,"CC-BY-4.0",,,256x256, 10, "SAR, MSI"
`CaBuAr`_,CD,Sentinel-2,"OpenRAIL",424,2,512x512,20,MSI
`ChaBuD`_,CD,Sentinel-2,"OpenRAIL",356,2,512x512,10,MSI `ChaBuD`_,CD,Sentinel-2,"OpenRAIL",356,2,512x512,10,MSI
`Cloud Cover Detection`_,S,Sentinel-2,"CC-BY-4.0","22,728",2,512x512,10,MSI `Cloud Cover Detection`_,S,Sentinel-2,"CC-BY-4.0","22,728",2,512x512,10,MSI
`COWC`_,"C, R","CSUAV AFRL, ISPRS, LINZ, AGRC","AGPL-3.0-only","388,435",2,256x256,0.15,RGB `COWC`_,"C, R","CSUAV AFRL, ISPRS, LINZ, AGRC","AGPL-3.0-only","388,435",2,256x256,0.15,RGB

1 Dataset Task Source License # Samples # Classes Size (px) Resolution (m) Bands
3 `Benin Cashew Plantations`_ S Airbus Pléiades CC-BY-4.0 70 6 1,122x1,186 10 MSI
4 `BigEarthNet`_ C Sentinel-1/2 CDLA-Permissive-1.0 590,326 19--43 120x120 10 SAR, MSI
5 `BioMassters`_ R Sentinel-1/2 and Lidar CC-BY-4.0 256x256 10 SAR, MSI
6 `CaBuAr`_ CD Sentinel-2 OpenRAIL 424 2 512x512 20 MSI
7 `ChaBuD`_ CD Sentinel-2 OpenRAIL 356 2 512x512 10 MSI
8 `Cloud Cover Detection`_ S Sentinel-2 CC-BY-4.0 22,728 2 512x512 10 MSI
9 `COWC`_ C, R CSUAV AFRL, ISPRS, LINZ, AGRC AGPL-3.0-only 388,435 2 256x256 0.15 RGB

16
tests/conf/cabuar.yaml Normal file
Просмотреть файл

@ -0,0 +1,16 @@
model:
class_path: SemanticSegmentationTask
init_args:
loss: "ce"
model: "unet"
backbone: "resnet18"
in_channels: 24
num_classes: 2
num_filters: 1
ignore_index: null
data:
class_path: CaBuArDataModule
init_args:
batch_size: 2
dict_kwargs:
root: "tests/data/cabuar"

Двоичные данные
tests/data/cabuar/512x512.hdf5 Normal file

Двоичный файл не отображается.

Двоичные данные
tests/data/cabuar/chabud_test.h5 Normal file

Двоичный файл не отображается.

69
tests/data/cabuar/data.py Normal file
Просмотреть файл

@ -0,0 +1,69 @@
#!/usr/bin/env python3
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import hashlib
import os
import random
import h5py
import numpy as np
# Sentinel-2 is 12-bit with range 0-4095
SENTINEL2_MAX = 4096
NUM_CHANNELS = 12
NUM_CLASSES = 2
SIZE = 32
np.random.seed(0)
random.seed(0)
filenames = ['512x512.hdf5', 'chabud_test.h5']
fold_mapping = {'train': [1, 2, 3, 4], 'val': [0], 'test': ['chabud']}
uris = [
'feb08801-64b1-4d11-a3fc-0efaad1f4274_0',
'e4d4dbcb-dd92-40cf-a7fe-fda8dd35f367_1',
'9fc8c1f4-1858-47c3-953e-1dc8b179a',
'3a1358a2-6155-445a-a269-13bebd9741a8_0',
'2f8e659c-f457-4527-a57f-bffc3bbe0baa_0',
'299ee670-19b1-4a76-bef3-34fd55580711_1',
'05cfef86-3e27-42be-a0cb-a61fe2f89e40_0',
'0328d12a-4ad8-4504-8ac5-70089db10b4e_1',
'04800581-b540-4f9b-9df8-7ee433e83f46_0',
'108ae2a9-d7d6-42f7-b89a-90bb75c23ccb_0',
'29413474-04b8-4bb1-8b89-fd640023d4a6_0',
'43f2e60a-73b4-4f33-b99e-319d892fcab4_0',
]
folds = random.choices(fold_mapping['train'], k=4) + [0] * 4 + ['chabud'] * 4
files = ['512x512.hdf5'] * 8 + ['chabud_test.h5'] * 4
# Remove old data
for filename in filenames:
if os.path.exists(filename):
os.remove(filename)
# Create dataset file
data = np.random.randint(
SENTINEL2_MAX, size=(SIZE, SIZE, NUM_CHANNELS), dtype=np.uint16
)
gt = np.random.randint(NUM_CLASSES, size=(SIZE, SIZE, 1), dtype=np.uint16)
for filename, uri, fold in zip(files, uris, folds):
with h5py.File(filename, 'a') as f:
sample = f.create_group(uri)
sample.attrs.create(
name='fold', data=np.int64(fold) if fold != 'chabud' else fold
)
sample.create_dataset
sample.create_dataset('pre_fire', data=data)
sample.create_dataset('post_fire', data=data)
sample.create_dataset('mask', data=gt)
# Compute checksums
for filename in filenames:
with open(filename, 'rb') as f:
md5 = hashlib.md5(f.read()).hexdigest()
print(f'{filename} md5: {md5}')

Просмотреть файл

@ -0,0 +1,92 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import os
from itertools import product
from pathlib import Path
import matplotlib.pyplot as plt
import pytest
import torch
import torch.nn as nn
from _pytest.fixtures import SubRequest
from pytest import MonkeyPatch
from torchgeo.datasets import CaBuAr, DatasetNotFoundError
pytest.importorskip('h5py', minversion='3.6')
class TestCaBuAr:
@pytest.fixture(
params=product([CaBuAr.all_bands, CaBuAr.rgb_bands], ['train', 'val', 'test'])
)
def dataset(
self, monkeypatch: MonkeyPatch, tmp_path: Path, request: SubRequest
) -> CaBuAr:
data_dir = os.path.join('tests', 'data', 'cabuar')
urls = (
os.path.join(data_dir, '512x512.hdf5'),
os.path.join(data_dir, 'chabud_test.h5'),
)
monkeypatch.setattr(CaBuAr, 'urls', urls)
bands, split = request.param
root = tmp_path
transforms = nn.Identity()
return CaBuAr(
root=root,
split=split,
bands=bands,
transforms=transforms,
download=True,
checksum=True,
)
def test_getitem(self, dataset: CaBuAr) -> None:
x = dataset[0]
assert isinstance(x, dict)
assert isinstance(x['image'], torch.Tensor)
assert isinstance(x['mask'], torch.Tensor)
# Image tests
assert x['image'].ndim == 3
if dataset.bands == CaBuAr.rgb_bands:
assert x['image'].shape[0] == 2 * 3
elif dataset.bands == CaBuAr.all_bands:
assert x['image'].shape[0] == 2 * 12
# Mask tests:
assert x['mask'].ndim == 2
def test_len(self, dataset: CaBuAr) -> None:
assert len(dataset) == 4
def test_already_downloaded(self, dataset: CaBuAr) -> None:
CaBuAr(root=dataset.root, download=True)
def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(DatasetNotFoundError, match='Dataset not found'):
CaBuAr(tmp_path)
def test_invalid_bands(self) -> None:
with pytest.raises(AssertionError):
CaBuAr(bands=('OK', 'BK'))
def test_plot(self, dataset: CaBuAr) -> None:
dataset.plot(dataset[0], suptitle='Test')
plt.close()
sample = dataset[0]
sample['prediction'] = sample['mask'].clone()
dataset.plot(sample, suptitle='prediction')
plt.close()
def test_plot_rgb(self, dataset: CaBuAr) -> None:
dataset = CaBuAr(root=dataset.root, bands=('B02',))
with pytest.raises(ValueError, match="doesn't contain some of the RGB bands"):
dataset.plot(dataset[0], suptitle='Single Band')
def test_invalid_split(self, dataset: CaBuAr) -> None:
with pytest.raises(AssertionError):
CaBuAr(dataset.root, split='foo')

Просмотреть файл

@ -50,6 +50,7 @@ class TestSemanticSegmentationTask:
'name', 'name',
[ [
'agrifieldnet', 'agrifieldnet',
'cabuar',
'chabud', 'chabud',
'chesapeake_cvpr_5', 'chesapeake_cvpr_5',
'chesapeake_cvpr_7', 'chesapeake_cvpr_7',
@ -83,7 +84,7 @@ class TestSemanticSegmentationTask:
self, monkeypatch: MonkeyPatch, name: str, fast_dev_run: bool self, monkeypatch: MonkeyPatch, name: str, fast_dev_run: bool
) -> None: ) -> None:
match name: match name:
case 'chabud': case 'chabud' | 'cabuar':
pytest.importorskip('h5py', minversion='3.6') pytest.importorskip('h5py', minversion='3.6')
case 'landcoverai': case 'landcoverai':
sha256 = ( sha256 = (

Просмотреть файл

@ -5,6 +5,7 @@
from .agrifieldnet import AgriFieldNetDataModule from .agrifieldnet import AgriFieldNetDataModule
from .bigearthnet import BigEarthNetDataModule from .bigearthnet import BigEarthNetDataModule
from .cabuar import CaBuArDataModule
from .chabud import ChaBuDDataModule from .chabud import ChaBuDDataModule
from .chesapeake import ChesapeakeCVPRDataModule from .chesapeake import ChesapeakeCVPRDataModule
from .cowc import COWCCountingDataModule from .cowc import COWCCountingDataModule
@ -65,6 +66,7 @@ __all__ = (
'SouthAfricaCropTypeDataModule', 'SouthAfricaCropTypeDataModule',
# NonGeoDataset # NonGeoDataset
'BigEarthNetDataModule', 'BigEarthNetDataModule',
'CaBuArDataModule',
'ChaBuDDataModule', 'ChaBuDDataModule',
'COWCCountingDataModule', 'COWCCountingDataModule',
'DeepGlobeLandCoverDataModule', 'DeepGlobeLandCoverDataModule',

Просмотреть файл

@ -0,0 +1,67 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""CaBuAr datamodule."""
from typing import Any
import torch
from einops import repeat
from ..datasets import CaBuAr
from .geo import NonGeoDataModule
class CaBuArDataModule(NonGeoDataModule):
"""LightningDataModule implementation for the CaBuAr dataset.
Uses the train/val/test splits from the dataset
.. versionadded:: 0.6
"""
# min/max values computed on train set using 2/98 percentiles
min = torch.tensor(
[0.0, 1.0, 73.0, 39.0, 46.0, 25.0, 26.0, 21.0, 17.0, 1.0, 20.0, 21.0]
)
max = torch.tensor(
[
1926.0,
2174.0,
2527.0,
2950.0,
3237.0,
3717.0,
4087.0,
4271.0,
4290.0,
4219.0,
4568.0,
3753.0,
]
)
def __init__(
self, batch_size: int = 64, num_workers: int = 0, **kwargs: Any
) -> None:
"""Initialize a new CaBuArDataModule instance.
Args:
batch_size: Size of each mini-batch.
num_workers: Number of workers for parallel data loading.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.CaBuAr`.
"""
bands = kwargs.get('bands', CaBuAr.all_bands)
band_indices = [CaBuAr.all_bands.index(b) for b in bands]
mins = self.min[band_indices]
maxs = self.max[band_indices]
# Change detection, 2 images from different times
mins = repeat(mins, 'c -> (t c)', t=2)
maxs = repeat(maxs, 'c -> (t c)', t=2)
self.mean = mins
self.std = maxs - mins
super().__init__(CaBuAr, batch_size, num_workers, **kwargs)

Просмотреть файл

@ -11,6 +11,7 @@ from .astergdem import AsterGDEM
from .benin_cashews import BeninSmallHolderCashews from .benin_cashews import BeninSmallHolderCashews
from .bigearthnet import BigEarthNet from .bigearthnet import BigEarthNet
from .biomassters import BioMassters from .biomassters import BioMassters
from .cabuar import CaBuAr
from .cbf import CanadianBuildingFootprints from .cbf import CanadianBuildingFootprints
from .cdl import CDL from .cdl import CDL
from .chabud import ChaBuD from .chabud import ChaBuD
@ -199,6 +200,7 @@ __all__ = (
'BeninSmallHolderCashews', 'BeninSmallHolderCashews',
'BigEarthNet', 'BigEarthNet',
'BioMassters', 'BioMassters',
'CaBuAr',
'ChaBuD', 'ChaBuD',
'CloudCoverDetection', 'CloudCoverDetection',
'COWC', 'COWC',

303
torchgeo/datasets/cabuar.py Normal file
Просмотреть файл

@ -0,0 +1,303 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""CaBuAr dataset."""
import os
from collections.abc import Callable
from typing import ClassVar
import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib.figure import Figure
from torch import Tensor
from .errors import DatasetNotFoundError
from .geo import NonGeoDataset
from .utils import Path, download_url, lazy_import, percentile_normalization
class CaBuAr(NonGeoDataset):
"""CaBuAr dataset.
`CaBuAr <https://huggingface.co/datasets/DarthReca/california_burned_areas>`__
is a dataset for Change detection for Burned area Delineation and part of
the splits are used for the ChaBuD ECML-PKDD 2023 Discovery Challenge.
Dataset features:
* Sentinel-2 multispectral imagery
* binary masks of burned areas
* 12 multispectral bands
* 424 pairs of pre and post images with 20 m per pixel resolution (512x512 px)
Dataset format:
* single hdf5 dataset containing images and masks
Dataset classes:
0. no change
1. burned area
If you use this dataset in your research, please cite the following paper:
* https://doi.org/10.1109/MGRS.2023.3292467
.. note::
This dataset requires the following additional library to be installed:
* `h5py <https://pypi.org/project/h5py/>`_ to load the dataset
.. versionadded:: 0.6
"""
all_bands = (
'B01',
'B02',
'B03',
'B04',
'B05',
'B06',
'B07',
'B08',
'B8A',
'B09',
'B11',
'B12',
)
rgb_bands = ('B04', 'B03', 'B02')
folds: ClassVar[dict[str, list[object]]] = {
'train': [1, 2, 3, 4],
'val': [0],
'test': ['chabud'],
}
urls = (
'https://huggingface.co/datasets/DarthReca/california_burned_areas/resolve/main/raw/patched/512x512.hdf5',
'https://huggingface.co/datasets/DarthReca/california_burned_areas/resolve/main/raw/patched/chabud_test.h5',
)
filenames = ('512x512.hdf5', 'chabud_test.h5')
md5s = ('15d78fb825f9a81dad600db828d22c08', 'a70bb7e4a2788657c2354c4c3d9296fe')
def __init__(
self,
root: Path = 'data',
split: str = 'train',
bands: tuple[str, ...] = all_bands,
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
download: bool = False,
checksum: bool = False,
) -> None:
"""Initialize a new CaBuAr dataset instance.
Args:
root: root directory where dataset can be found
split: one of "train", "val", "test"
bands: the subset of bands to load
transforms: a function/transform that takes input sample and its target as
entry and returns a transformed version
download: if True, download dataset and store it in the root directory
checksum: if True, check the MD5 of the downloaded files (may be slow)
Raises:
AssertionError: If ``split`` or ``bands`` arguments are invalid.
DatasetNotFoundError: If dataset is not found and *download* is False.
DependencyNotFoundError: If h5py is not installed.
"""
lazy_import('h5py')
assert split in self.folds
assert set(bands) <= set(self.all_bands)
# Set the file index based on the split
file_index = 1 if split == 'test' else 0
self.root = root
self.split = split
self.bands = bands
self.transforms = transforms
self.download = download
self.checksum = checksum
self.filepath = os.path.join(root, self.filenames[file_index])
self.band_indices = [self.all_bands.index(b) for b in bands]
self._verify()
self.uuids = self._load_uuids()
def __getitem__(self, index: int) -> dict[str, Tensor]:
"""Return an index within the dataset.
Args:
index: index to return
Returns:
sample containing image and mask
"""
image = self._load_image(index)
mask = self._load_target(index)
sample = {'image': image, 'mask': mask}
if self.transforms is not None:
sample = self.transforms(sample)
return sample
def __len__(self) -> int:
"""Return the number of data points in the dataset.
Returns:
length of the dataset
"""
return len(self.uuids)
def _load_uuids(self) -> list[str]:
"""Return the image uuids for the given split.
Returns:
the image uuids
"""
h5py = lazy_import('h5py')
uuids = []
with h5py.File(self.filepath, 'r') as f:
for k, v in f.items():
if v.attrs['fold'] in self.folds[self.split] and 'pre_fire' in v.keys():
uuids.append(k)
return sorted(uuids)
def _load_image(self, index: int) -> Tensor:
"""Load a single image.
Args:
index: index to return
Returns:
the image
"""
h5py = lazy_import('h5py')
uuid = self.uuids[index]
with h5py.File(self.filepath, 'r') as f:
pre_array = f[uuid]['pre_fire'][:]
post_array = f[uuid]['post_fire'][:]
# index specified bands and concatenate
pre_array = pre_array[..., self.band_indices]
post_array = post_array[..., self.band_indices]
array = np.concatenate([pre_array, post_array], axis=-1).astype(np.float32)
tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))
return tensor
def _load_target(self, index: int) -> Tensor:
"""Load the target mask for a single image.
Args:
index: index to return
Returns:
the target mask
"""
h5py = lazy_import('h5py')
uuid = self.uuids[index]
with h5py.File(self.filepath, 'r') as f:
array = f[uuid]['mask'][:].astype(np.int32).squeeze(axis=-1)
tensor = torch.from_numpy(array)
tensor = tensor.to(torch.long)
return tensor
def _verify(self) -> None:
"""Verify the integrity of the dataset."""
# Check if the files already exist
exists = []
for filename in self.filenames:
filepath = os.path.join(self.root, filename)
exists.append(os.path.exists(filepath))
if all(exists):
return
# Check if the user requested to download the dataset
if not self.download:
raise DatasetNotFoundError(self)
# Download the dataset
self._download()
def _download(self) -> None:
"""Download the dataset."""
for url, filename, md5 in zip(self.urls, self.filenames, self.md5s):
filepath = os.path.join(self.root, filename)
if not os.path.exists(filepath):
download_url(
url,
self.root,
filename=filename,
md5=md5 if self.checksum else None,
)
def plot(
self,
sample: dict[str, Tensor],
show_titles: bool = True,
suptitle: str | None = None,
) -> Figure:
"""Plot a sample from the dataset.
Args:
sample: a sample returned by :meth:`__getitem__`
show_titles: flag indicating whether to show titles above each panel
suptitle: optional suptitle to use for figure
Returns:
a matplotlib Figure with the rendered sample
"""
rgb_indices = []
for band in self.rgb_bands:
if band in self.bands:
rgb_indices.append(self.bands.index(band))
else:
raise ValueError("Dataset doesn't contain some of the RGB bands")
mask = sample['mask'].numpy()
image_pre = sample['image'][: len(self.bands)][rgb_indices].numpy()
image_post = sample['image'][len(self.bands) :][rgb_indices].numpy()
image_pre = percentile_normalization(image_pre)
image_post = percentile_normalization(image_post)
ncols = 3
showing_predictions = 'prediction' in sample
if showing_predictions:
prediction = sample['prediction']
ncols += 1
fig, axs = plt.subplots(nrows=1, ncols=ncols, figsize=(10, ncols * 5))
axs[0].imshow(np.transpose(image_pre, (1, 2, 0)))
axs[0].axis('off')
axs[1].imshow(np.transpose(image_post, (1, 2, 0)))
axs[1].axis('off')
axs[2].imshow(mask)
axs[2].axis('off')
if showing_predictions:
axs[3].imshow(prediction)
axs[3].axis('off')
if show_titles:
axs[0].set_title('Image Pre')
axs[1].set_title('Image Post')
axs[2].set_title('Mask')
if showing_predictions:
axs[3].set_title('Prediction')
if suptitle is not None:
plt.suptitle(suptitle)
return fig