Getting ready for public release

This commit is contained in:
Caleb Robinson 2021-08-31 20:34:13 +00:00 коммит произвёл Adam J. Stewart
Родитель 13be61440f
Коммит dcff173fef
3 изменённых файлов: 59 добавлений и 19 удалений

Просмотреть файл

@ -1,15 +1,24 @@
<img src="logo/logo-color.svg" width="400" alt="TorchGeo"/>
Datasets, transforms, and models for geospatial data.
Torchgeo is a PyTorch based library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specifically for geospatial data.
Our goals for this library are to make it simple 1.) for machine learning experts to use geospatial data in their workflows, and 2.) for remote sensing experts to use their data in machine learning workflows.
See our [installation instructions](#installation-instructions), [documentation](#documentation), and [examples](#example-usage) to learn how to use torchgeo.
[![docs](https://github.com/microsoft/torchgeo/actions/workflows/docs.yaml/badge.svg)](https://github.com/microsoft/torchgeo/actions/workflows/docs.yaml)
[![style](https://github.com/microsoft/torchgeo/actions/workflows/style.yaml/badge.svg)](https://github.com/microsoft/torchgeo/actions/workflows/style.yaml)
[![tests](https://github.com/microsoft/torchgeo/actions/workflows/tests.yaml/badge.svg)](https://github.com/microsoft/torchgeo/actions/workflows/tests.yaml)
## Project setup
## Installation instructions
Until the first release, you can install an environment compatible with torchgeo with `conda`, `pip`, or `spack` as shown below.
### Conda
**Note**: we assume you have access to a GPU and include the `pytorch-gpu` package from the conda-forge channel in "environment.yml".
```bash
conda config --set channel_priority strict
conda env create --file environment.yml
@ -19,31 +28,43 @@ conda activate torchgeo
python -c "import torch; print(torch.cuda.is_available())"
```
## Example training run
### Pip
With Python 3.6 or later:
```bash
pip install -r requirements.txt
```
### Spack
```bash
TODO
```
## Documentation
You can find the documentation for torchgeo on ReadTheDocs [TODO](TODO).
## Example usage
The following sections give basic examples of what you can do with torchgeo. For more examples, check out our documentation [TODO](TODO).
### Train and test models using our PyTorch Lightning based training script
```bash
# run the training script with a config file
python train.py config_file=conf/landcoverai.yaml
```
## Developing
### Download and use the Tropical Cyclone Wind Estimation Competition dataset
```python
import torchgeo
```
make tests
```
## Datasets
| Dataset | Imagery Type | Label Type | Dataset Type | External Link |
|:---------------------------------------: |:------------------------------------------: |:---------------------: |:-------------: |:----------------------------------------------------: |
| Smallholder Cashew Plantations in Benin | Sentinel-2 (71 scene time series) | Semantic segmentation | GeoDataset | https://registry.mlhub.earth/10.34911/rdnt.hfv20i/ |
| Cars Overhead With Context (COWC) | 0.15m/px overhead imagery | Object detection | VisionDataset | https://gdo152.llnl.gov/cowc/ |
| CV4A Kenya Crop Type | Sentinel-2 (13 scene time series) | Semantic segmentation | GeoDataset | https://registry.mlhub.earth/10.34911/rdnt.dw605x/ |
| Tropical Cyclone Wind Estimation | GOES single band imagery | Regression | VisionDataset | http://registry.mlhub.earth/10.34911/rdnt.xs53up/ |
| Landcover.ai | RGB aerial imagery at 0.5m/px and 0.25m/px | Semantic segmentation | GeoDataset | https://landcover.ai/ |
| NWPU VHR-10 | Google Earth RGB and Vaihingen CIR | Object detection | VisionDataset | https://github.com/chaozhong2010/VHR-10_dataset_coco |
| SEN12MS | Sentinel-1 and Sentinel-2 | Semantic segmentation | GeoDataset | https://github.com/schmitt-muc/SEN12MS |
| So2Sat | Sentinel-1 and Sentinel-2 | Classification | VisionDataset | https://github.com/zhu-xlab/So2Sat-LCZ42 |
## Contributing

Просмотреть файл

@ -1,5 +1,14 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"metadata": {

Просмотреть файл

@ -1,5 +1,15 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "aa1fdea3",
"metadata": {},
"source": [
"Copyright (c) Microsoft Corporation. All rights reserved.\n",
"\n",
"Licensed under the MIT License."
]
},
{
"cell_type": "markdown",
"id": "NdrXRgjU7Zih",