torchgeo.models ================= .. module:: torchgeo.models Change Star ^^^^^^^^^^^ .. autoclass:: ChangeStar .. autoclass:: ChangeStarFarSeg .. autoclass:: ChangeMixin CROMA ^^^^^ .. autoclass:: CROMA .. autofunction:: croma_base .. autofunction:: croma_large .. autoclass:: CROMABase_Weights .. autoclass:: CROMALarge_Weights DOFA ^^^^ .. autoclass:: DOFA .. autofunction:: dofa_small_patch16_224 .. autofunction:: dofa_base_patch16_224 .. autofunction:: dofa_large_patch16_224 .. autofunction:: dofa_huge_patch16_224 .. autoclass:: DOFABase16_Weights .. autoclass:: DOFALarge16_Weights FarSeg ^^^^^^ .. autoclass:: FarSeg Fully-convolutional Network ^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: FCN FC Siamese Networks ^^^^^^^^^^^^^^^^^^^ .. autoclass:: FCSiamConc .. autoclass:: FCSiamDiff RCF Extractor ^^^^^^^^^^^^^ .. autoclass:: RCF ResNet ^^^^^^ .. autofunction:: resnet18 .. autofunction:: resnet50 .. autofunction:: resnet152 .. autoclass:: ResNet18_Weights .. autoclass:: ResNet50_Weights .. autoclass:: ResNet152_Weights Scale-MAE ^^^^^^^^^ .. autofunction:: ScaleMAE .. autoclass:: ScaleMAELarge16_Weights Swin Transformer ^^^^^^^^^^^^^^^^^^ .. autofunction:: swin_v2_t .. autofunction:: swin_v2_b .. autoclass:: Swin_V2_T_Weights .. autoclass:: Swin_V2_B_Weights Vision Transformer ^^^^^^^^^^^^^^^^^^ .. autofunction:: vit_small_patch16_224 .. autoclass:: ViTSmall16_Weights Utility Functions ^^^^^^^^^^^^^^^^^ .. autofunction:: get_model .. autofunction:: get_model_weights .. autofunction:: get_weight .. autofunction:: list_models Pretrained Weights ^^^^^^^^^^^^^^^^^^ TorchGeo provides a number of pre-trained models and backbones, allowing you to perform transfer learning on small datasets without training a new model from scratch or relying on ImageNet weights. Depending on the satellite/sensor where your data comes from, choose from the following pre-trained weights based on which one has the best performance metrics. Sensor-Agnostic --------------- These weights can be used with imagery from any satellite/sensor. In addition to the usual performance metrics, there are also additional columns for dynamic spatial (resolution), temporal (time span), and/or spectral (wavelength) support, either via their training data (implicit) or via their model architecture (explicit). .. csv-table:: :widths: 45 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 :header-rows: 1 :align: center :file: weights/agnostic.csv Landsat ------- .. csv-table:: :widths: 65 10 10 10 10 10 10 10 10 10 :header-rows: 1 :align: center :file: weights/landsat.csv NAIP ---- .. csv-table:: :widths: 45 10 10 10 10 :header-rows: 1 :align: center :file: weights/naip.csv Sentinel-1 ---------- .. csv-table:: :widths: 45 10 10 10 10 :header-rows: 1 :align: center :file: weights/sentinel1.csv Sentinel-2 ---------- .. csv-table:: :widths: 45 10 10 10 10 15 10 10 10 :header-rows: 1 :align: center :file: weights/sentinel2.csv