зеркало из https://github.com/microsoft/torchgeo.git
90 строки
3.1 KiB
Python
90 строки
3.1 KiB
Python
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
# Licensed under the MIT License.
|
|
|
|
import glob
|
|
import os
|
|
import shutil
|
|
from pathlib import Path
|
|
from typing import Generator
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
from _pytest.monkeypatch import MonkeyPatch
|
|
from torch.utils.data import ConcatDataset
|
|
|
|
from torchgeo.datasets import BeninSmallHolderCashews
|
|
|
|
|
|
class Dataset:
|
|
def download(self, output_dir: str, **kwargs: str) -> None:
|
|
glob_path = os.path.join("tests", "data", "ts_cashew_benin", "*.tar.gz")
|
|
for tarball in glob.iglob(glob_path):
|
|
shutil.copy(tarball, output_dir)
|
|
|
|
|
|
def fetch(dataset_id: str, **kwargs: str) -> Dataset:
|
|
return Dataset()
|
|
|
|
|
|
class TestBeninSmallHolderCashews:
|
|
@pytest.fixture
|
|
def dataset(
|
|
self, monkeypatch: Generator[MonkeyPatch, None, None], tmp_path: Path
|
|
) -> BeninSmallHolderCashews:
|
|
radiant_mlhub = pytest.importorskip("radiant_mlhub", minversion="0.2.1")
|
|
monkeypatch.setattr( # type: ignore[attr-defined]
|
|
radiant_mlhub.Dataset, "fetch", fetch
|
|
)
|
|
source_md5 = "255efff0f03bc6322470949a09bc76db"
|
|
labels_md5 = "ed2195d93ca6822d48eb02bc3e81c127"
|
|
monkeypatch.setitem( # type: ignore[attr-defined]
|
|
BeninSmallHolderCashews.image_meta, "md5", source_md5
|
|
)
|
|
monkeypatch.setitem( # type: ignore[attr-defined]
|
|
BeninSmallHolderCashews.target_meta, "md5", labels_md5
|
|
)
|
|
monkeypatch.setattr( # type: ignore[attr-defined]
|
|
BeninSmallHolderCashews, "dates", ("2019_11_05",)
|
|
)
|
|
root = str(tmp_path)
|
|
transforms = nn.Identity() # type: ignore[attr-defined]
|
|
return BeninSmallHolderCashews(
|
|
root,
|
|
transforms=transforms,
|
|
download=True,
|
|
api_key="",
|
|
checksum=True,
|
|
verbose=True,
|
|
)
|
|
|
|
def test_getitem(self, dataset: BeninSmallHolderCashews) -> None:
|
|
x = dataset[0]
|
|
assert isinstance(x, dict)
|
|
assert isinstance(x["image"], torch.Tensor)
|
|
assert isinstance(x["mask"], torch.Tensor)
|
|
assert isinstance(x["x"], torch.Tensor)
|
|
assert isinstance(x["y"], torch.Tensor)
|
|
|
|
def test_len(self, dataset: BeninSmallHolderCashews) -> None:
|
|
assert len(dataset) == 72
|
|
|
|
def test_add(self, dataset: BeninSmallHolderCashews) -> None:
|
|
ds = dataset + dataset
|
|
assert isinstance(ds, ConcatDataset)
|
|
assert len(ds) == 144
|
|
|
|
def test_already_downloaded(self, dataset: BeninSmallHolderCashews) -> None:
|
|
BeninSmallHolderCashews(root=dataset.root, download=True, api_key="")
|
|
|
|
def test_not_downloaded(self, tmp_path: Path) -> None:
|
|
with pytest.raises(RuntimeError, match="Dataset not found or corrupted."):
|
|
BeninSmallHolderCashews(str(tmp_path))
|
|
|
|
def test_invalid_bands(self) -> None:
|
|
with pytest.raises(AssertionError):
|
|
BeninSmallHolderCashews(bands=["B01", "B02"]) # type: ignore[arg-type]
|
|
|
|
with pytest.raises(ValueError, match="is an invalid band name."):
|
|
BeninSmallHolderCashews(bands=("foo", "bar"))
|