torchgeo/evaluate.py

265 строки
8.1 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""torchgeo model evaluation script."""
import argparse
import csv
import os
from typing import Any, Dict, Union
import pytorch_lightning as pl
import torch
from torchmetrics import Accuracy, JaccardIndex, MetricCollection
from torchgeo.trainers import ClassificationTask, SemanticSegmentationTask
from train import TASK_TO_MODULES_MAPPING
def set_up_parser() -> argparse.ArgumentParser:
"""Set up the argument parser.
Returns:
the argument parser
"""
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--task",
choices=TASK_TO_MODULES_MAPPING.keys(),
type=str,
help="name of task to test",
)
parser.add_argument(
"--input-checkpoint",
required=True,
help="path to the checkpoint file to test",
metavar="CKPT",
)
parser.add_argument(
"--gpu", default=0, type=int, help="GPU ID to use", metavar="ID"
)
parser.add_argument(
"--root-dir",
required=True,
type=str,
help="root directory of the dataset for the accompanying task",
)
parser.add_argument(
"-b",
"--batch-size",
default=2**4,
type=int,
help="number of samples in each mini-batch",
metavar="SIZE",
)
parser.add_argument(
"-w",
"--num-workers",
default=6,
type=int,
help="number of workers for parallel data loading",
metavar="NUM",
)
parser.add_argument(
"--seed", default=0, type=int, help="random seed for reproducibility"
)
parser.add_argument(
"--output-fn",
required=True,
type=str,
help="path to the CSV file to write results",
metavar="FILE",
)
parser.add_argument(
"-v", "--verbose", action="store_true", help="print results to stdout"
)
return parser
def run_eval_loop(
model: pl.LightningModule,
dataloader: Any,
device: torch.device,
metrics: MetricCollection,
) -> Any:
"""Runs a standard test loop over a dataloader and records metrics.
Args:
model: the model used for inference
dataloader: the dataloader to get samples from
device: the device to put data on
metrics: a torchmetrics compatible metric collection to score the output
from the model
Returns:
the result of ``metrics.compute()``
"""
for batch in dataloader:
x = batch["image"].to(device)
if "mask" in batch:
y = batch["mask"].to(device)
elif "label" in batch:
y = batch["label"].to(device)
with torch.inference_mode():
y_pred = model(x)
metrics(y_pred, y)
results = metrics.compute()
metrics.reset()
return results
def main(args: argparse.Namespace) -> None:
"""High-level pipeline.
Runs a model checkpoint on a test set and saves results to file.
Args:
args: command-line arguments
"""
assert os.path.exists(args.input_checkpoint)
assert os.path.exists(args.root_dir)
TASK = TASK_TO_MODULES_MAPPING[args.task][0]
DATAMODULE = TASK_TO_MODULES_MAPPING[args.task][1]
# Loads the saved model from checkpoint based on the `args.task` name that was
# passed as input
model = TASK.load_from_checkpoint(args.input_checkpoint)
model.freeze()
model.eval()
dm = DATAMODULE( # type: ignore[call-arg]
seed=args.seed,
root_dir=args.root_dir,
num_workers=args.num_workers,
batch_size=args.batch_size,
)
dm.setup()
# Record model hyperparameters
if issubclass(TASK, ClassificationTask):
val_row: Dict[str, Union[str, float]] = {
"split": "val",
"classification_model": model.hparams["classification_model"],
"learning_rate": model.hparams["learning_rate"],
"weights": model.hparams["weights"],
"loss": model.hparams["loss"],
}
test_row: Dict[str, Union[str, float]] = {
"split": "test",
"classification_model": model.hparams["classification_model"],
"learning_rate": model.hparams["learning_rate"],
"weights": model.hparams["weights"],
"loss": model.hparams["loss"],
}
elif issubclass(TASK, SemanticSegmentationTask):
val_row = {
"split": "val",
"segmentation_model": model.hparams["segmentation_model"],
"encoder_name": model.hparams["encoder_name"],
"encoder_weights": model.hparams["encoder_weights"],
"learning_rate": model.hparams["learning_rate"],
"loss": model.hparams["loss"],
}
test_row = {
"split": "test",
"segmentation_model": model.hparams["segmentation_model"],
"encoder_name": model.hparams["encoder_name"],
"encoder_weights": model.hparams["encoder_weights"],
"learning_rate": model.hparams["learning_rate"],
"loss": model.hparams["loss"],
}
else:
raise ValueError(f"{TASK} is not supported")
# Compute metrics
device = torch.device("cuda:%d" % (args.gpu))
model = model.to(device)
if args.task == "etci2021": # Custom metric setup for testing ETCI2021
metrics = MetricCollection(
[Accuracy(num_classes=2), JaccardIndex(num_classes=2, reduction="none")]
).to(device)
val_results = run_eval_loop(model, dm.val_dataloader(), device, metrics)
test_results = run_eval_loop(model, dm.test_dataloader(), device, metrics)
val_row.update(
{
"overall_accuracy": val_results["Accuracy"].item(),
"jaccard_index": val_results["JaccardIndex"][1].item(),
}
)
test_row.update(
{
"overall_accuracy": test_results["Accuracy"].item(),
"jaccard_index": test_results["JaccardIndex"][1].item(),
}
)
else: # Test with PyTorch Lightning as usual
val_results = run_eval_loop(
model, dm.val_dataloader(), device, model.val_metrics
)
test_results = run_eval_loop(
model, dm.test_dataloader(), device, model.test_metrics
)
# Save the results and model hyperparameters to a CSV file
if issubclass(TASK, ClassificationTask):
val_row.update(
{
"average_accuracy": val_results["val_AverageAccuracy"].item(),
"overall_accuracy": val_results["val_OverallAccuracy"].item(),
}
)
test_row.update(
{
"average_accuracy": test_results["test_AverageAccuracy"].item(),
"overall_accuracy": test_results["test_OverallAccuracy"].item(),
}
)
elif issubclass(TASK, SemanticSegmentationTask):
val_row.update(
{
"overall_accuracy": val_results["val_Accuracy"].item(),
"jaccard_index": val_results["val_JaccardIndex"].item(),
}
)
test_row.update(
{
"overall_accuracy": test_results["test_Accuracy"].item(),
"jaccard_index": test_results["test_JaccardIndex"].item(),
}
)
assert set(val_row.keys()) == set(test_row.keys())
fieldnames = list(test_row.keys())
# Write to file
if not os.path.exists(args.output_fn):
with open(args.output_fn, "w") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
with open(args.output_fn, "a") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writerow(val_row)
writer.writerow(test_row)
if __name__ == "__main__":
parser = set_up_parser()
args = parser.parse_args()
pl.seed_everything(args.seed)
main(args)