torchgeo/benchmark.py

290 строки
8.1 KiB
Python
Executable File

#!/usr/bin/env python3
"""dataset and sampler benchmarking script."""
import argparse
import csv
import os
import time
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.models import resnet34
from torchgeo.datasets import CDL, Landsat8
from torchgeo.samplers import GridGeoSampler, RandomBatchGeoSampler, RandomGeoSampler
def set_up_parser() -> argparse.ArgumentParser:
"""Set up the argument parser.
Returns:
the argument parser
"""
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--landsat-root",
default=os.path.join("data", "landsat"),
help="directory containing Landsat data",
metavar="ROOT",
)
parser.add_argument(
"--cdl-root",
default=os.path.join("data", "cdl"),
help="directory containing CDL data",
metavar="ROOT",
)
parser.add_argument(
"-d", "--device", default=0, type=int, help="CPU/GPU ID to use", metavar="ID"
)
parser.add_argument(
"-c",
"--cache",
action="store_true",
help="cache file handles during data loading",
)
parser.add_argument(
"-b",
"--batch-size",
default=2 ** 4,
type=int,
help="number of samples in each mini-batch",
metavar="SIZE",
)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
"-n",
"--num-batches",
type=int,
help="number of batches to load",
metavar="SIZE",
)
group.add_argument(
"-e",
"--epoch-size",
type=int,
help="number of samples to load, should be evenly divisible by batch size",
metavar="SIZE",
)
parser.add_argument(
"-p",
"--patch-size",
default=224,
type=int,
help="height/width of each patch",
metavar="SIZE",
)
parser.add_argument(
"-s",
"--stride",
default=112,
type=int,
help="sampling stride for GridGeoSampler",
)
parser.add_argument(
"-w",
"--num-workers",
default=0,
type=int,
help="number of workers for parallel data loading",
metavar="NUM",
)
parser.add_argument(
"--seed", default=0, type=int, help="random seed for reproducibility"
)
parser.add_argument(
"--output-fn",
default="benchmark-results.csv",
type=str,
help="path to the CSV file to write results",
metavar="FILE",
)
parser.add_argument(
"-v", "--verbose", action="store_true", help="print results to stdout"
)
return parser
def main(args: argparse.Namespace) -> None:
"""High-level pipeline.
Benchmarks performance of various samplers with and without caching.
Args:
args: command-line arguments
"""
bands = ["B1", "B2", "B3", "B4", "B5", "B6", "B7"]
# Benchmark samplers
# Initialize datasets
cdl = CDL(args.cdl_root, cache=args.cache)
landsat = Landsat8(
args.landsat_root, crs=cdl.crs, res=cdl.res, cache=args.cache, bands=bands
)
dataset = landsat + cdl
# Initialize samplers
if args.epoch_size:
length = args.epoch_size
num_batches = args.epoch_size // args.batch_size
elif args.num_batches:
length = args.num_batches * args.batch_size
num_batches = args.num_batches
# Convert from pixel coords to CRS coords
size = args.patch_size * cdl.res
stride = args.stride * cdl.res
samplers = [
RandomGeoSampler(landsat, size=size, length=length),
GridGeoSampler(landsat, size=size, stride=stride),
RandomBatchGeoSampler(
landsat, size=size, batch_size=args.batch_size, length=length
),
]
results_rows = []
for sampler in samplers:
if args.verbose:
print(f"\n{sampler.__class__.__name__}:")
if isinstance(sampler, RandomBatchGeoSampler):
dataloader = DataLoader(
dataset, batch_sampler=sampler, num_workers=args.num_workers
)
else:
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
sampler=sampler, # type: ignore[arg-type]
num_workers=args.num_workers,
)
tic = time.time()
num_total_patches = 0
for i, batch in enumerate(dataloader):
num_total_patches += args.batch_size
# This is to stop the GridGeoSampler from enumerating everything
if i == num_batches - 1:
break
toc = time.time()
duration = toc - tic
if args.verbose:
print(f" duration: {duration:.3f} sec")
print(f" count: {num_total_patches} patches")
print(f" rate: {num_total_patches / duration:.3f} patches/sec")
if args.cache:
if args.verbose:
print(landsat._cached_load_warp_file.cache_info())
# Clear cache for fair comparison between samplers
# Both `landsat` and `cdl` share the same cache
landsat._cached_load_warp_file.cache_clear()
results_rows.append(
{
"cached": args.cache,
"seed": args.seed,
"duration": duration,
"count": num_total_patches,
"rate": num_total_patches / duration,
"sampler": sampler.__class__.__name__,
"batch_size": args.batch_size,
"num_workers": args.num_workers,
}
)
# Benchmark model
model = resnet34()
# Change number of input channels to match Landsat
model.conv1 = nn.Conv2d( # type: ignore[attr-defined]
len(bands), 64, kernel_size=7, stride=2, padding=3, bias=False
)
criterion = nn.CrossEntropyLoss() # type: ignore[attr-defined]
params = model.parameters()
optimizer = optim.SGD(params, lr=0.0001)
device = torch.device( # type: ignore[attr-defined]
"cuda" if torch.cuda.is_available() else "cpu", args.device
)
model = model.to(device)
tic = time.time()
num_total_patches = 0
for _ in range(num_batches):
num_total_patches += args.batch_size
x = torch.rand(args.batch_size, len(bands), args.patch_size, args.patch_size)
# y = torch.randint(0, 256, (args.batch_size, args.patch_size, args.patch_size))
y = torch.randint(0, 256, (args.batch_size,)) # type: ignore[attr-defined]
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
prediction = model(x)
loss = criterion(prediction, y)
loss.backward()
optimizer.step()
toc = time.time()
duration = toc - tic
if args.verbose:
print("\nResNet-34:")
print(f" duration: {duration:.3f} sec")
print(f" count: {num_total_patches} patches")
print(f" rate: {num_total_patches / duration:.3f} patches/sec")
results_rows.append(
{
"cached": args.cache,
"seed": args.seed,
"duration": duration,
"count": num_total_patches,
"rate": num_total_patches / duration,
"sampler": "ResNet-34",
"batch_size": args.batch_size,
"num_workers": args.num_workers,
}
)
fieldnames = [
"cached",
"seed",
"duration",
"count",
"rate",
"sampler",
"batch_size",
"num_workers",
]
if not os.path.exists(args.output_fn):
with open(args.output_fn, "w") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
with open(args.output_fn, "a") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writerows(results_rows)
if __name__ == "__main__":
parser = set_up_parser()
args = parser.parse_args()
if args.epoch_size:
assert args.epoch_size % args.batch_size == 0
pl.seed_everything(args.seed)
main(args)