зеркало из https://github.com/microsoft/torchgeo.git
211 строки
8.0 KiB
Python
Executable File
211 строки
8.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
# Licensed under the MIT License.
|
|
|
|
"""torchgeo model training script."""
|
|
|
|
import os
|
|
from typing import Any, Dict, Tuple, Type, cast
|
|
|
|
import pytorch_lightning as pl
|
|
from omegaconf import DictConfig, OmegaConf
|
|
from pytorch_lightning import loggers as pl_loggers
|
|
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
|
|
|
|
from torchgeo.datasets import (
|
|
BigEarthNetDataModule,
|
|
ChesapeakeCVPRDataModule,
|
|
COWCCountingDataModule,
|
|
CycloneDataModule,
|
|
LandCoverAIDataModule,
|
|
NAIPChesapeakeDataModule,
|
|
RESISC45DataModule,
|
|
SEN12MSDataModule,
|
|
So2SatDataModule,
|
|
UCMercedDataModule,
|
|
)
|
|
from torchgeo.trainers import (
|
|
BYOLTask,
|
|
ClassificationTask,
|
|
MultiLabelClassificationTask,
|
|
RegressionTask,
|
|
SemanticSegmentationTask,
|
|
)
|
|
from torchgeo.trainers.chesapeake import ChesapeakeCVPRSegmentationTask
|
|
from torchgeo.trainers.landcoverai import LandCoverAISegmentationTask
|
|
from torchgeo.trainers.naipchesapeake import NAIPChesapeakeSegmentationTask
|
|
from torchgeo.trainers.resisc45 import RESISC45ClassificationTask
|
|
from torchgeo.trainers.so2sat import So2SatClassificationTask
|
|
|
|
TASK_TO_MODULES_MAPPING: Dict[
|
|
str, Tuple[Type[pl.LightningModule], Type[pl.LightningDataModule]]
|
|
] = {
|
|
"bigearthnet": (MultiLabelClassificationTask, BigEarthNetDataModule),
|
|
"byol": (BYOLTask, ChesapeakeCVPRDataModule),
|
|
"chesapeake_cvpr": (ChesapeakeCVPRSegmentationTask, ChesapeakeCVPRDataModule),
|
|
"cowc_counting": (RegressionTask, COWCCountingDataModule),
|
|
"cyclone": (RegressionTask, CycloneDataModule),
|
|
"landcoverai": (LandCoverAISegmentationTask, LandCoverAIDataModule),
|
|
"naipchesapeake": (NAIPChesapeakeSegmentationTask, NAIPChesapeakeDataModule),
|
|
"resisc45": (RESISC45ClassificationTask, RESISC45DataModule),
|
|
"sen12ms": (SemanticSegmentationTask, SEN12MSDataModule),
|
|
"so2sat": (So2SatClassificationTask, So2SatDataModule),
|
|
"ucmerced": (ClassificationTask, UCMercedDataModule),
|
|
}
|
|
|
|
|
|
def set_up_omegaconf() -> DictConfig:
|
|
"""Loads program arguments from either YAML config files or command line arguments.
|
|
|
|
This method loads defaults/a schema from "conf/defaults.yaml" as well as potential
|
|
arguments from the command line. If one of the command line arguments is
|
|
"config_file", then we additionally read arguments from that YAML file. One of the
|
|
config file based arguments or command line arguments must specify task.name. The
|
|
task.name value is used to grab a task specific defaults from its respective
|
|
trainer. The final configuration is given as merge(task_defaults, defaults,
|
|
config file, command line). The merge() works from the first argument to the last,
|
|
replacing existing values with newer values. Additionally, if any values are
|
|
merged into task_defaults without matching types, then there will be a runtime
|
|
error.
|
|
|
|
Returns:
|
|
an OmegaConf DictConfig containing all the validated program arguments
|
|
|
|
Raises:
|
|
FileNotFoundError: when ``config_file`` does not exist
|
|
ValueError: when ``task.name`` is not a valid task
|
|
"""
|
|
conf = OmegaConf.load("conf/defaults.yaml")
|
|
command_line_conf = OmegaConf.from_cli()
|
|
|
|
if "config_file" in command_line_conf:
|
|
config_fn = command_line_conf.config_file
|
|
if os.path.isfile(config_fn):
|
|
user_conf = OmegaConf.load(config_fn)
|
|
conf = OmegaConf.merge(conf, user_conf)
|
|
else:
|
|
raise FileNotFoundError(f"config_file={config_fn} is not a valid file")
|
|
|
|
conf = OmegaConf.merge( # Merge in any arguments passed via the command line
|
|
conf, command_line_conf
|
|
)
|
|
|
|
# These OmegaConf structured configs enforce a schema at runtime, see:
|
|
# https://omegaconf.readthedocs.io/en/2.0_branch/structured_config.html#merging-with-other-configs
|
|
task_name = conf.experiment.task
|
|
task_config_fn = os.path.join("conf", "task_defaults", f"{task_name}.yaml")
|
|
if task_name == "test":
|
|
task_conf = OmegaConf.create()
|
|
elif os.path.exists(task_config_fn):
|
|
task_conf = cast(DictConfig, OmegaConf.load(task_config_fn))
|
|
else:
|
|
raise ValueError(
|
|
f"experiment.task={task_name} is not recognized as a valid task"
|
|
)
|
|
|
|
conf = OmegaConf.merge(task_conf, conf)
|
|
conf = cast(DictConfig, conf) # convince mypy that everything is alright
|
|
|
|
return conf
|
|
|
|
|
|
def main(conf: DictConfig) -> None:
|
|
"""Main training loop."""
|
|
######################################
|
|
# Setup output directory
|
|
######################################
|
|
|
|
experiment_name = conf.experiment.name
|
|
task_name = conf.experiment.task
|
|
if os.path.isfile(conf.program.output_dir):
|
|
raise NotADirectoryError("`program.output_dir` must be a directory")
|
|
os.makedirs(conf.program.output_dir, exist_ok=True)
|
|
|
|
experiment_dir = os.path.join(conf.program.output_dir, experiment_name)
|
|
os.makedirs(experiment_dir, exist_ok=True)
|
|
|
|
if len(os.listdir(experiment_dir)) > 0:
|
|
if conf.program.overwrite:
|
|
print(
|
|
f"WARNING! The experiment directory, {experiment_dir}, already exists, "
|
|
+ "we might overwrite data in it!"
|
|
)
|
|
else:
|
|
raise FileExistsError(
|
|
f"The experiment directory, {experiment_dir}, already exists and isn't "
|
|
+ "empty. We don't want to overwrite any existing results, exiting..."
|
|
)
|
|
|
|
with open(os.path.join(experiment_dir, "experiment_config.yaml"), "w") as f:
|
|
OmegaConf.save(config=conf, f=f)
|
|
|
|
######################################
|
|
# Choose task to run based on arguments or configuration
|
|
######################################
|
|
# Convert the DictConfig into a dictionary so that we can pass as kwargs.
|
|
task_args = cast(Dict[str, Any], OmegaConf.to_object(conf.experiment.module))
|
|
datamodule_args = cast(
|
|
Dict[str, Any], OmegaConf.to_object(conf.experiment.datamodule)
|
|
)
|
|
|
|
datamodule: pl.LightningDataModule
|
|
task: pl.LightningModule
|
|
if task_name in TASK_TO_MODULES_MAPPING:
|
|
task_class, datamodule_class = TASK_TO_MODULES_MAPPING[task_name]
|
|
task = task_class(**task_args)
|
|
datamodule = datamodule_class(**datamodule_args)
|
|
else:
|
|
raise ValueError(
|
|
f"experiment.task={task_name} is not recognized as a valid task"
|
|
)
|
|
|
|
######################################
|
|
# Setup trainer
|
|
######################################
|
|
tb_logger = pl_loggers.TensorBoardLogger(conf.program.log_dir, name=experiment_name)
|
|
|
|
checkpoint_callback = ModelCheckpoint(
|
|
monitor="val_loss", dirpath=experiment_dir, save_top_k=1, save_last=True
|
|
)
|
|
early_stopping_callback = EarlyStopping(
|
|
monitor="val_loss", min_delta=0.00, patience=18
|
|
)
|
|
|
|
trainer_args = cast(Dict[str, Any], OmegaConf.to_object(conf.trainer))
|
|
|
|
trainer_args["callbacks"] = [checkpoint_callback, early_stopping_callback]
|
|
trainer_args["logger"] = tb_logger
|
|
trainer_args["default_root_dir"] = experiment_dir
|
|
trainer = pl.Trainer(**trainer_args)
|
|
|
|
if trainer_args["auto_lr_find"]:
|
|
trainer.tune(model=task, datamodule=datamodule)
|
|
|
|
######################################
|
|
# Run experiment
|
|
######################################
|
|
trainer.fit(model=task, datamodule=datamodule)
|
|
trainer.test(model=task, datamodule=datamodule)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Taken from https://github.com/pangeo-data/cog-best-practices
|
|
_rasterio_best_practices = {
|
|
"GDAL_DISABLE_READDIR_ON_OPEN": "EMPTY_DIR",
|
|
"AWS_NO_SIGN_REQUEST": "YES",
|
|
"GDAL_MAX_RAW_BLOCK_CACHE_SIZE": "200000000",
|
|
"GDAL_SWATH_SIZE": "200000000",
|
|
"VSI_CURL_CACHE_SIZE": "200000000",
|
|
}
|
|
os.environ.update(_rasterio_best_practices)
|
|
|
|
conf = set_up_omegaconf()
|
|
|
|
# Set random seed for reproducibility
|
|
# https://pytorch-lightning.readthedocs.io/en/latest/api/pytorch_lightning.utilities.seed.html#pytorch_lightning.utilities.seed.seed_everything
|
|
pl.seed_everything(conf.program.seed)
|
|
|
|
# Main training procedure
|
|
main(conf)
|