зеркало из https://github.com/microsoft/wpa.git
docs: adjust function family (#58)
- Adjust family - Created two templates: ch.R and spq-params.R - General code formatting
This commit is contained in:
Родитель
617ff636ba
Коммит
2f6b9cfd97
|
@ -72,6 +72,7 @@ export(flag_outlooktime)
|
|||
export(flex_index)
|
||||
export(g2g_network)
|
||||
export(generate_report)
|
||||
export(heat_colors)
|
||||
export(heat_colours)
|
||||
export(hr_trend)
|
||||
export(hrvar_count)
|
||||
|
|
|
@ -3,27 +3,52 @@
|
|||
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
|
||||
# --------------------------------------------------------------------------------------------
|
||||
|
||||
#' @title Identify the WPA metrics that have the biggest change between two periods.
|
||||
#' @title Identify the WPA metrics that have the biggest change between two
|
||||
#' periods.
|
||||
#'
|
||||
#' @description
|
||||
#' This function uses the Information Value algorithm to predict which WPA metrics are most explained by the change in dates.
|
||||
#' `r lifecycle::badge('experimental')`
|
||||
#'
|
||||
#' This function uses the Information Value algorithm to predict
|
||||
#' which Workplace Analytics metrics are most explained by the change in dates.
|
||||
#'
|
||||
#' @param data Person Query as a dataframe including date column named "Date"
|
||||
#' This function assumes the data format is MM/DD/YYYY as is standard in a WpA query output.
|
||||
#' @param before_start Start date of "before" time period in YYYY-MM-DD. Defaults to earliest date in dataset.
|
||||
#' @param before_end End date of "before" time period in YYYY-MM-DD
|
||||
#' @param after_start Start date of "after" time period in YYYY-MM-DD. Defaults to day after before_end.
|
||||
#' @param after_end End date of "after" time period in YYYY-MM-DD. Defaults to latest date in dataset.
|
||||
#' @param mybins Number of bins to cut the data into for Information Value analysis. Defaults to 10.
|
||||
#' @param return Specify whether to return a summary table or detailed Excel and PDF files
|
||||
#' Specify "table" or "detailed" for outputs. Defaults to table.
|
||||
#' This function assumes the data format is `MM/DD/YYYY` as is standard in a
|
||||
#' WpA query output.
|
||||
#' @param before_start Start date of "before" time period in `YYYY-MM-DD`.
|
||||
#' Defaults to earliest date in dataset.
|
||||
#' @param before_end End date of "before" time period in `YYYY-MM-DD`
|
||||
#' @param after_start Start date of "after" time period in `YYYY-MM-DD`.
|
||||
#' Defaults to day after before_end.
|
||||
#' @param after_end End date of "after" time period in `YYYY-MM-DD`. Defaults to
|
||||
#' latest date in dataset.
|
||||
#' @param mybins Number of bins to cut the data into for Information Value
|
||||
#' analysis. Defaults to 10.
|
||||
#' @param return String specifying what to return. The current only valid
|
||||
#' option is `"table"`.
|
||||
#'
|
||||
#' @return
|
||||
#' data frame containing all the variables and the corresponding Information
|
||||
#' Value.
|
||||
#'
|
||||
#' @import dplyr
|
||||
#' @import Information
|
||||
#'
|
||||
#'
|
||||
#' @family Flexible Input
|
||||
#' @family Variable Association
|
||||
#' @family Information Value
|
||||
#' @family Time-series
|
||||
#'
|
||||
#' @examples
|
||||
#' # Returns a data frame
|
||||
#' \donttest{
|
||||
#' sq_data %>%
|
||||
#' IV_by_period(
|
||||
#' before_start = "2019-11-03",
|
||||
#' before_end = "2019-11-09",
|
||||
#' after_start = "2019-11-10",
|
||||
#' after_end = "2019-11-16"
|
||||
#' )
|
||||
#' }
|
||||
#'
|
||||
#' @export
|
||||
|
||||
|
@ -141,7 +166,7 @@ IV_by_period <-
|
|||
}
|
||||
|
||||
# Return ranking table
|
||||
return(create_dt(Tables$Summary, rounding = 2))
|
||||
return(Tables$Summary)
|
||||
# print("Access individual metrics via Outputs[[metric_name]], e.g., Outputs[[Workweek_span]]")
|
||||
|
||||
# # Store each variable's plot
|
||||
|
|
|
@ -34,6 +34,7 @@
|
|||
#' }
|
||||
#'
|
||||
#' @family Reports
|
||||
#' @family Variable Association
|
||||
#' @family Information Value
|
||||
#'
|
||||
#' @inherit generate_report return
|
||||
|
|
|
@ -10,8 +10,7 @@
|
|||
#' Returns a stacked bar plot by default.
|
||||
#' Additional options available to return a table with distribution elements.
|
||||
#'
|
||||
#' @details
|
||||
#' Uses the metric `Collaboration_hours`.
|
||||
#' @template ch
|
||||
#'
|
||||
#' @inheritParams create_dist
|
||||
#' @inherit create_dist return
|
||||
|
|
|
@ -10,8 +10,7 @@
|
|||
#' a 'fizzy' scatter plot by default.
|
||||
#' Additional options available to return a table with distribution elements.
|
||||
#'
|
||||
#' @details
|
||||
#' Uses the metric `Collaboration_hours`.
|
||||
#' @template ch
|
||||
#'
|
||||
#' @inheritParams create_fizz
|
||||
#' @inherit create_fizz return
|
||||
|
|
|
@ -11,8 +11,7 @@
|
|||
#' with a separate panel per value in the HR attribute.
|
||||
#' Additional options available to return a summary table.
|
||||
#'
|
||||
#' @details
|
||||
#' Uses the metric `Collaboration_hours`.
|
||||
#' @template ch
|
||||
#'
|
||||
#' @inheritParams create_line
|
||||
#' @inherit create_line return
|
||||
|
|
|
@ -10,8 +10,7 @@
|
|||
#' By default returns a week by week heatmap, highlighting the points in time with most activity.
|
||||
#' Additional options available to return a summary table.
|
||||
#'
|
||||
#' @details
|
||||
#' Uses the metric `Collaboration_hours`.
|
||||
#' @template ch
|
||||
#'
|
||||
#' @inheritParams create_trend
|
||||
#'
|
||||
|
|
|
@ -6,18 +6,17 @@
|
|||
#' @title Mean Bar Plot for any metric
|
||||
#'
|
||||
#' @description
|
||||
#' Provides an overview analysis of a selected metric by calculating a mean per metric.
|
||||
#' Provides an overview analysis of a selected metric by calculating a mean per
|
||||
#' metric.
|
||||
#' Returns a bar plot showing the average of a selected metric by default.
|
||||
#' Additional options available to return a summary table.
|
||||
#'
|
||||
#' @param data A Standard Person Query dataset in the form of a data frame.
|
||||
#' @param metric Character string containing the name of the metric,
|
||||
#' e.g. "Collaboration_hours"
|
||||
#' @param hrvar HR Variable by which to split metrics, defaults to "Organization"
|
||||
#' but accepts any character vector, e.g. "LevelDesignation"
|
||||
#' @param mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
|
||||
#' @template spq-params
|
||||
#' @param mingroup Numeric value setting the privacy threshold / minimum group
|
||||
#' size. Defaults to 5.
|
||||
#'
|
||||
#' @param return String specifying what to return. This must be one of the following strings:
|
||||
#' @param return String specifying what to return. This must be one of the
|
||||
#' following strings:
|
||||
#' - `"plot"`
|
||||
#' - `"table"`
|
||||
#'
|
||||
|
|
|
@ -10,6 +10,8 @@
|
|||
#' of collaboration hours to after-hours collaboration hours.
|
||||
#' Returns a character string by default.
|
||||
#'
|
||||
#' @template ch
|
||||
#'
|
||||
#' @import dplyr
|
||||
#'
|
||||
#' @param data A data frame containing a Person Query.
|
||||
|
|
|
@ -8,12 +8,16 @@
|
|||
#' @param n the number of colors (>= 1) to be in the palette.
|
||||
#' @param alpha an alpha-transparency level in the range of 0 to 1
|
||||
#' (0 means transparent and 1 means opaque)
|
||||
#' @param rev logical indicating whether the ordering of the colors should be reversed.
|
||||
#' @param rev logical indicating whether the ordering of the colors should be
|
||||
#' reversed.
|
||||
#'
|
||||
#' @examples
|
||||
#' barplot(rep(10, 50), col = heat_colours(n = 50), border = NA)
|
||||
#'
|
||||
#' barplot(rep(10, 50), col = heat_colours(n = 50, alpha = 0.5, rev = TRUE), border = NA)
|
||||
#' barplot(rep(10, 50), col = heat_colours(n = 50, alpha = 0.5, rev = TRUE),
|
||||
#' border = NA)
|
||||
#'
|
||||
#' @family Support
|
||||
#'
|
||||
#' @return
|
||||
#' A character vector containing the HEX codes and the same length as `n` is
|
||||
|
@ -43,3 +47,8 @@ heat_colours <- function (n, alpha, rev = FALSE) {
|
|||
cols
|
||||
}
|
||||
}
|
||||
|
||||
#' @rdname heat_colours
|
||||
#' @export
|
||||
heat_colors <- heat_colours
|
||||
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
#' # Return summary table
|
||||
#' hr_trend(dv_data, return = "table")
|
||||
#'
|
||||
#' @family Visualization
|
||||
#' @family Data Validation
|
||||
#'
|
||||
#' @export
|
||||
|
|
|
@ -11,10 +11,10 @@
|
|||
#' bar chart as typically seen in 'Analysis Scope'.
|
||||
#'
|
||||
#' @param data A Standard Person Query dataset in the form of a data frame.
|
||||
#' @param hrvar HR Variable by which to split metrics, defaults to "Organization"
|
||||
#' but accepts any character vector, e.g. "LevelDesignation".
|
||||
#' If a vector with more than one value is provided, the HR attributes are automatically
|
||||
#' concatenated.
|
||||
#' @param hrvar HR Variable by which to split metrics, defaults to
|
||||
#' "Organization" but accepts any character vector, e.g. "LevelDesignation".
|
||||
#' If a vector with more than one value is provided, the HR attributes are
|
||||
#' automatically concatenated.
|
||||
#' @param return String specifying what to return. This must be one of the
|
||||
#' following strings:
|
||||
#' - `"plot"`
|
||||
|
|
|
@ -3,20 +3,25 @@
|
|||
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
|
||||
# --------------------------------------------------------------------------------------------
|
||||
|
||||
#' @title Create count of distinct fields and percentage of employees with NAs for all HR variables
|
||||
#' @title Create count of distinct fields and percentage of employees with
|
||||
#' missing values for all HR variables
|
||||
#'
|
||||
#' @description
|
||||
#' This function enables you to create a summary table to validate organizational data. This table will provide a summary of the data found
|
||||
#' in the WpA Sources page.
|
||||
#' This function will return a summary table with the count of distinct fields per HR attribute and the percentage of
|
||||
#' employees with NAs for that attribute.
|
||||
#' See hrvar_count function for more detail on the specific HR attribute of interest.
|
||||
#' This function enables you to create a summary table to validate
|
||||
#' organizational data. This table will provide a summary of the data found in
|
||||
#' the Workplace Analytics Sources page. This function will return a summary
|
||||
#' table with the count of distinct fields per HR attribute and the percentage
|
||||
#' of employees with missing values for that attribute. See `hrvar_count()`
|
||||
#' function for more detail on the specific HR attribute of interest.
|
||||
#'
|
||||
#' @param data A Standard Person Query dataset in the form of a data frame.
|
||||
#' @param n_var number of HR variables to include in report as rows. Default is set to 10 HR variables.
|
||||
#' @param n_var number of HR variables to include in report as rows. Default is
|
||||
#' set to 50 HR variables.
|
||||
#' @param return String to specify what to return
|
||||
#' @param threshold The max number of unique values allowed for any attribute. Default is 100.
|
||||
#' @param maxna The max percentage of NAs allowable for any column. Default is 20.
|
||||
#' @param threshold The max number of unique values allowed for any attribute.
|
||||
#' Default is 100.
|
||||
#' @param maxna The max percentage of NAs allowable for any column. Default is
|
||||
#' 20.
|
||||
#'
|
||||
#' @import dplyr
|
||||
#'
|
||||
|
@ -28,8 +33,11 @@
|
|||
#'
|
||||
#' @return
|
||||
#' Returns an error message by default, where 'text' is passed in `return`.
|
||||
#' When 'table' is passed, a summary table listing the number of distinct fields and percentage of NAs for the specified number of HR attributes will be returned.
|
||||
#' when 'message' is passed, outputs a message indicating which values are beyond the specified thresholds.
|
||||
#' - `'table'`: data frame. A summary table listing the number of distinct
|
||||
#' fields and percentage of missing values for the specified number of HR
|
||||
#' attributes will be returned.
|
||||
#' - `'message'`: outputs a message indicating which values are
|
||||
#' beyond the specified thresholds.
|
||||
#'
|
||||
#' @export
|
||||
hrvar_count_all <- function(data,
|
||||
|
|
|
@ -6,36 +6,56 @@
|
|||
#' @title Identify employees who have churned from the dataset
|
||||
#'
|
||||
#' @description
|
||||
#' This function identifies and counts the number of employees who have churned from
|
||||
#' the dataset by measuring whether an employee who is present in the first `n` (n1) weeks
|
||||
#' of the data is present in the last `n` (n2) weeks of the data.
|
||||
#' This function identifies and counts the number of employees who have churned
|
||||
#' from the dataset by measuring whether an employee who is present in the first
|
||||
#' `n` (n1) weeks of the data is present in the last `n` (n2) weeks of the data.
|
||||
#'
|
||||
#' @details
|
||||
#' An additional use case of this function is the ability to identify "new-joiners" by using
|
||||
#' the argument `flip`.
|
||||
#' An additional use case of this function is the ability to identify
|
||||
#' "new-joiners" by using the argument `flip`.
|
||||
#'
|
||||
#' @param data A Person Query as a data frame. Must contain a `PersonId`.
|
||||
#' @param n1 A numeric value specifying the number of weeks at the beginning of the period
|
||||
#' that defines the measured employee set. Defaults to 6.
|
||||
#' @param n2 A numeric value specifying the number of weeks at the end of the period
|
||||
#' to calculate whether employees have churned from the data. Defaults to 6.
|
||||
#' @param return String specifying what to return. Defaults to "message", with options to
|
||||
#' return a character string ("text") or the `PersonId` of employees who have been identified
|
||||
#' as churned ("data").
|
||||
#' @param flip Logical, defaults to FALSE. This determines whether to reverse the logic of identifying the
|
||||
#' non-overlapping set. If set to `TRUE`, this effectively identifies new-joiners, or those
|
||||
#' who were not present in the first n weeks of the data but were present in the final n weeks.
|
||||
#' @param n1 A numeric value specifying the number of weeks at the beginning of
|
||||
#' the period that defines the measured employee set. Defaults to 6.
|
||||
#' @param n2 A numeric value specifying the number of weeks at the end of the
|
||||
#' period to calculate whether employees have churned from the data. Defaults
|
||||
#' to 6.
|
||||
#' @param return String specifying what to return. This must be one of the
|
||||
#' following strings:
|
||||
#' - `"message"` (default)
|
||||
#' - `"text"`
|
||||
#' - `"data"`
|
||||
#'
|
||||
#' See `Value` for more information.
|
||||
#'
|
||||
#' @param flip Logical, defaults to FALSE. This determines whether to reverse
|
||||
#' the logic of identifying the non-overlapping set. If set to `TRUE`, this
|
||||
#' effectively identifies new-joiners, or those who were not present in the
|
||||
#' first n weeks of the data but were present in the final n weeks.
|
||||
#'
|
||||
#' @return
|
||||
#' A different output is returned depending on the value passed to the `return`
|
||||
#' argument:
|
||||
#' - `"message"`: Message on console. A diagnostic message.
|
||||
#' - `"text"`: String. A diagnostic message.
|
||||
#' - `"data"`: Character vector containing the the `PersonId` of
|
||||
#' employees who have been identified as churned.
|
||||
#'
|
||||
#' @details
|
||||
#' If an employee is present in the first `n` weeks of the data but not present in the last
|
||||
#' `n` weeks of the data, the function considers the employee as churned. As the measurement period
|
||||
#' is defined by the number of weeks from the start and the end of the passed data frame, you
|
||||
#' may consider filtering the dates accordingly before running this function.
|
||||
#' If an employee is present in the first `n` weeks of the data but not present
|
||||
#' in the last `n` weeks of the data, the function considers the employee as
|
||||
#' churned. As the measurement period is defined by the number of weeks from the
|
||||
#' start and the end of the passed data frame, you may consider filtering the
|
||||
#' dates accordingly before running this function.
|
||||
#'
|
||||
#' Another assumption that is in place is that any employee whose `PersonId` is
|
||||
#' not available in the data has churned. Note that there may be other reasons
|
||||
#' why an employee's `PersonId` may not be present, e.g. maternity/paternity
|
||||
#' leave, Workplace Analytics license has been removed, shift to a
|
||||
#' low-collaboration role (to the extent that he/she becomes inactive).
|
||||
#'
|
||||
#' @family Data Validation
|
||||
#'
|
||||
#' Another assumption that is in place is that any employee whose `PersonId` is not available in the
|
||||
#' data has churned. Note that there may be other reasons why an employee's `PersonId` may not
|
||||
#' be present, e.g. maternity/paternity leave, Workplace Analytics license has been removed,
|
||||
#' shift to a low-collaboration role (to the extent that he/she becomes inactive).
|
||||
#' @examples
|
||||
#' sq_data %>% identify_churn(n1 = 3, n2 = 3, return = "message")
|
||||
#'
|
||||
|
@ -100,18 +120,27 @@ identify_churn <- function(data,
|
|||
" (", n1, " weeks).")
|
||||
|
||||
} else {
|
||||
|
||||
stop("Invalid argument for `flip`")
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
if(return == "message"){
|
||||
|
||||
message(printMessage)
|
||||
|
||||
} else if(return == "text"){
|
||||
|
||||
printMessage
|
||||
|
||||
} else if(return == "data"){
|
||||
|
||||
churner_id
|
||||
|
||||
} else {
|
||||
|
||||
stop("Invalid `return`")
|
||||
}
|
||||
}
|
||||
|
|
|
@ -6,21 +6,45 @@
|
|||
#' @title Identify Holiday Weeks based on outliers
|
||||
#'
|
||||
#' @description
|
||||
#' This function scans a standard query output for weeks where collaboration hours is far outside the mean.
|
||||
#' Returns a list of weeks that appear to be holiday weeks and optionally an edited dataframe with outliers removed.
|
||||
#' By default, missing values are excluded.
|
||||
#' This function scans a standard query output for weeks where collaboration
|
||||
#' hours is far outside the mean. Returns a list of weeks that appear to be
|
||||
#' holiday weeks and optionally an edited dataframe with outliers removed. By
|
||||
#' default, missing values are excluded.
|
||||
#'
|
||||
#' As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.
|
||||
#' As best practice, run this function prior to any analysis to remove atypical
|
||||
#' collaboration weeks from your dataset.
|
||||
#'
|
||||
#' @template ch
|
||||
#'
|
||||
#' @param data A Standard Person Query dataset in the form of a data frame.
|
||||
#' @param sd The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.
|
||||
#' @param return String to specify what to return. Returns a message by default (`return` = "message").
|
||||
#' Valid options are:
|
||||
#' - When 'message' is passed, a message is printed identifying holiday weeks.
|
||||
#' - When 'data' is passed, a dataset with outlier weeks flagged in a new column is returned as a dataframe.
|
||||
#' - When 'data_cleaned' is passed, a dataset with outlier weeks removed is returned as a dataframe.
|
||||
#' - when 'data_dirty' is passed, a dataset with only outlier weeks is returned as a dataframe.
|
||||
#' - when 'plot' is passed, a plot with holiday weeks highlighted is returned as a dataframe.
|
||||
#' @param sd The standard deviation below the mean for collaboration hours that
|
||||
#' should define an outlier week. Enter a positive number. Default is 1
|
||||
#' standard deviation.
|
||||
#'
|
||||
#'#' @param return String specifying what to return. This must be one of the
|
||||
#' following strings:
|
||||
#' - `"message"` (default)
|
||||
#' - `"data"`
|
||||
#' - `"data_cleaned"`
|
||||
#' - `"data_dirty"`
|
||||
#' - `"plot"`
|
||||
#'
|
||||
#' See `Value` for more information.
|
||||
#'
|
||||
#' @return
|
||||
#' A different output is returned depending on the value passed to the `return`
|
||||
#' argument:
|
||||
#' - `"message"`: message on console. a message is printed identifying holiday
|
||||
#' weeks.
|
||||
#' - `"data"`: data frame. A dataset with outlier weeks flagged in a new
|
||||
#' column is returned as a dataframe.
|
||||
#' - `"data_cleaned"`: data frame. A dataset with outlier weeks removed is
|
||||
#' returned.
|
||||
#' - `"data_dirty"`: data frame. A dataset with only outlier weeks is
|
||||
#' returned.
|
||||
#' - `"plot"`: ggplot object. A line plot of Collaboration Hours with holiday
|
||||
#' weeks highlighted.
|
||||
#'
|
||||
#'
|
||||
#' @import dplyr
|
||||
#' @import ggplot2
|
||||
|
@ -35,7 +59,6 @@
|
|||
#' # Return plot
|
||||
#' identify_holidayweeks(sq_data, return = "plot")
|
||||
#'
|
||||
#'
|
||||
#' @export
|
||||
identify_holidayweeks <- function(data, sd = 1, return = "message"){
|
||||
|
||||
|
|
|
@ -6,23 +6,35 @@
|
|||
#' @title Identify Inactive Weeks
|
||||
#'
|
||||
#' @description
|
||||
#' This function scans a standard query output for weeks where collaboration hours is far outside the mean for any individual person in the dataset.
|
||||
#' Returns a list of weeks that appear to be inactive weeks and optionally an edited dataframe with outliers removed.
|
||||
#' This function scans a standard query output for weeks where collaboration
|
||||
#' hours is far outside the mean for any individual person in the dataset.
|
||||
#' Returns a list of weeks that appear to be inactive weeks and optionally an
|
||||
#' edited dataframe with outliers removed.
|
||||
#'
|
||||
#' As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.
|
||||
#' As best practice, run this function prior to any analysis to remove atypical
|
||||
#' collaboration weeks from your dataset.
|
||||
#'
|
||||
#' @param data A Standard Person Query dataset in the form of a data frame.
|
||||
#' @param sd The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.
|
||||
#' @param return String to specify what to return.
|
||||
#' @param sd The standard deviation below the mean for collaboration hours that
|
||||
#' should define an outlier week. Enter a positive number. Default is 1
|
||||
#' standard deviation.
|
||||
#' @param return String specifying what to return. This must be one of the
|
||||
#' following strings:
|
||||
#' - `"text"`
|
||||
#' - `"data_cleaned"`
|
||||
#' - `"data_dirty"`
|
||||
#'
|
||||
#' See `Value` for more information.
|
||||
#'
|
||||
#' @import dplyr
|
||||
#'
|
||||
#' @family Data Validation
|
||||
#'
|
||||
#' @return
|
||||
#' Returns an error message by default, where 'text' is returned.
|
||||
#' When 'data_cleaned' is passed, a dataset with outlier weeks removed is returned as a dataframe.
|
||||
#' When 'data_dirty' is passed, a dataset with outlier weeks is returned as a dataframe.
|
||||
#' Returns an error message by default, where `'text'` is returned. When
|
||||
#' `'data_cleaned'` is passed, a dataset with outlier weeks removed is returned
|
||||
#' as a dataframe. When `'data_dirty'` is passed, a dataset with outlier weeks
|
||||
#' is returned as a dataframe.
|
||||
#'
|
||||
#' @export
|
||||
identify_inactiveweeks <- function(data, sd = 2, return = "text"){
|
||||
|
|
|
@ -3,26 +3,44 @@
|
|||
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
|
||||
# --------------------------------------------------------------------------------------------
|
||||
|
||||
#' @title Identify Non-Knowledge workers in a Person Query using Collaboration Hours
|
||||
#' @title Identify Non-Knowledge workers in a Person Query using Collaboration
|
||||
#' Hours
|
||||
#'
|
||||
#' @description
|
||||
#' This function scans a standard query output to identify employees with consistently low collaboration signals.
|
||||
#' Returns the % of non-knowledge workers identified by Organization, and optionally an edited dataframe with non-knowledge workers removed, or the full dataframe with the kw/nkw flag added.
|
||||
#' This function scans a standard query output to identify employees with
|
||||
#' consistently low collaboration signals. Returns the % of non-knowledge
|
||||
#' workers identified by Organization, and optionally an edited dataframe with
|
||||
#' non-knowledge workers removed, or the full dataframe with the kw/nkw flag
|
||||
#' added.
|
||||
#'
|
||||
#' @param data A Standard Person Query dataset in the form of a data frame.
|
||||
#' @param collab_threshold The collaboration hours threshold that should be exceeded as an average for the entire analysis period for the employee to be categorized as a knowledge worker ("kw").
|
||||
#' Enter a positive number. Default is set to 5 collaboration hours.
|
||||
#' @param return String to specify what to return
|
||||
#' @param collab_threshold The collaboration hours threshold that should be
|
||||
#' exceeded as an average for the entire analysis period for the employee to
|
||||
#' be categorized as a knowledge worker ("kw"). Enter a positive number.
|
||||
#' Default is set to 5 collaboration hours.
|
||||
#' @param return String specifying what to return. This must be one of the
|
||||
#' following strings:
|
||||
#' - `"text"`
|
||||
#' - `"data_with_flag"`
|
||||
#' - `"data_clean"`
|
||||
#' - `"data_summary"`
|
||||
#'
|
||||
#' See `Value` for more information.
|
||||
#'
|
||||
#' @import dplyr
|
||||
#'
|
||||
#' @family Data Validation
|
||||
#'
|
||||
#' @return
|
||||
#' Returns an error message by default, where 'text' is passed in `return`.
|
||||
#' When 'data_with_flag' is passed, a copy of your original dataframe with an additional column containing the kw/nkw flag will be returned.
|
||||
#' When 'data_clean' is passed, a full dataframe excluding "nkw" employees will be returned.
|
||||
#' when 'data_summmary' is passed, a summary table by organization listing the number and % of non-knowledge workers will be returned.
|
||||
#' A different output is returned depending on the value passed to the `return`
|
||||
#' argument:
|
||||
#' - `"text"`: string. Returns a diagnostic message.
|
||||
#' - `"data_with_flag"`: data frame. Original input data with an additional
|
||||
#' column containing the `kw`/`nkw` flag.
|
||||
#' - `"data_clean"`: data frame. Data frame with non-knowledge workers
|
||||
#' excluded.
|
||||
#' - `"data_summary"`: data frame. A summary table by organization listing
|
||||
#' the number and % of non-knowledge workers.
|
||||
#'
|
||||
#' @export
|
||||
identify_nkw <- function(data, collab_threshold = 5, return = "data_summary"){
|
||||
|
|
|
@ -27,7 +27,6 @@
|
|||
#' Returns a data frame with `Date` (if grouping variable is not set),
|
||||
#' the metric, and the corresponding z-score.
|
||||
#'
|
||||
#' @family General
|
||||
#' @family Data Validation
|
||||
#'
|
||||
#' @export
|
||||
|
|
|
@ -6,16 +6,35 @@
|
|||
#' @title Identify groups under privacy threshold
|
||||
#'
|
||||
#' @description
|
||||
#' This function scans a standard query output for groups with of employees under the privacy threshold.
|
||||
#' The method consists in reviewing each individual HR attribute, and count the distinct people within each group.
|
||||
#' This function scans a standard query output for groups with of employees
|
||||
#' under the privacy threshold. The method consists in reviewing each individual
|
||||
#' HR attribute, and count the distinct people within each group.
|
||||
#'
|
||||
#' @param data A Standard Person Query dataset in the form of a data frame.
|
||||
#' @param hrvar A list of HR Variables to consider in the scan.
|
||||
#' Defaults to all HR attributes identified.
|
||||
#' @param mingroup Numeric value setting the privacy threshold / minimum group size.
|
||||
#' Defaults to 5.
|
||||
#' @param return A character vector specifying what to return.
|
||||
#' Valid values include "table" (default) and "text" (text)
|
||||
#' @param mingroup Numeric value setting the privacy threshold / minimum group
|
||||
#' size. Defaults to 5.
|
||||
#' @param return String specifying what to return. This must be one of the
|
||||
#' following strings:
|
||||
#' - `"table"`
|
||||
#' - `"text"`
|
||||
#'
|
||||
#' See `Value` for more information.
|
||||
#'
|
||||
#' @return
|
||||
#' A different output is returned depending on the value passed to the `return`
|
||||
#' argument:
|
||||
#' - `"table"`: data frame. A summary table of groups that fall below the
|
||||
#' privacy threshold.
|
||||
#' - `"text"`: string. A diagnostic message.
|
||||
#'
|
||||
#' @examples
|
||||
#' # Return a summary table
|
||||
#' dv_data %>% identify_privacythreshold(return = "table")
|
||||
#'
|
||||
#' # Return a diagnostic message
|
||||
#' dv_data %>% identify_privacythreshold(return = "text")
|
||||
#'
|
||||
#' @import dplyr
|
||||
#' @import ggplot2
|
||||
|
|
|
@ -13,11 +13,13 @@
|
|||
#' @param data A Workplace Analytics dataset in the form of a data frame.
|
||||
#' If the data is not identified as a Workplace Analytics dataset, the function
|
||||
#' will return an error.
|
||||
#' @param threshold Debugging use only. Increase to raise the 'strictness' of the
|
||||
#' guessing algorithm. Defaults to 2.
|
||||
#' @param threshold Debugging use only. Increase to raise the 'strictness' of
|
||||
#' the guessing algorithm. Defaults to 2.
|
||||
#'
|
||||
#' @family Data Validation
|
||||
#'
|
||||
#' @return String. A diagnostic message is returned.
|
||||
#'
|
||||
#' @examples
|
||||
#' identify_query(sq_data) # Standard query
|
||||
#' identify_query(mt_data) # Meeting query
|
||||
|
@ -64,11 +66,17 @@ identify_query <- function(data, threshold = 2){
|
|||
f_guess <- qlabels[which.min(total_check_vec)]
|
||||
|
||||
if(total_check_n == 0){
|
||||
|
||||
stop("Error: please check if query data is properly formatted query data.")
|
||||
|
||||
} else if(min_nm > threshold){
|
||||
|
||||
stop("Column mismatches: please check if query data is properly formatted query data.")
|
||||
|
||||
} else {
|
||||
|
||||
f_guess
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -28,11 +28,13 @@
|
|||
#' argument:
|
||||
#' - `"plot"`: ggplot object. A bar plot for the weekly count of shifts.
|
||||
#' - `"table"`: data frame. A summary table for the count of shifts.
|
||||
#' - `"data`: data frame. Input data appended with the following columns:
|
||||
#' - `Shifts`
|
||||
#' - `"data`: data frame. Input data appended with the `Shifts` columns.
|
||||
#'
|
||||
#' @importFrom data.table ":=" "%like%" "%between%"
|
||||
#'
|
||||
#' @family Data Validation
|
||||
#' @family Working Patterns
|
||||
#'
|
||||
#' @examples
|
||||
#' # Return plot
|
||||
#' dv_data %>% identify_shifts()
|
||||
|
|
|
@ -37,6 +37,7 @@
|
|||
#'
|
||||
#' @importFrom data.table ":=" "%like%" "%between%"
|
||||
#'
|
||||
#' @family Data Validation
|
||||
#' @family Working Patterns
|
||||
#'
|
||||
#' @examples
|
||||
|
|
|
@ -3,7 +3,8 @@
|
|||
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
|
||||
# --------------------------------------------------------------------------------------------
|
||||
|
||||
#' @title Tenure calculation based on different input dates, returns data summary table or histogram
|
||||
#' @title Tenure calculation based on different input dates, returns data
|
||||
#' summary table or histogram
|
||||
#'
|
||||
#' @description
|
||||
#' This function calculates employee tenure based on different input dates.
|
||||
|
@ -13,8 +14,10 @@
|
|||
#' @family Data Validation
|
||||
#'
|
||||
#' @param data A Standard Person Query dataset in the form of a data frame.
|
||||
#' @param end_date A string specifying the name of the date variable representing the latest date. Defaults to "Date".
|
||||
#' @param beg_date A string specifying the name of the date variable representing the hire date. Defaults to "HireDate".
|
||||
#' @param end_date A string specifying the name of the date variable
|
||||
#' representing the latest date. Defaults to "Date".
|
||||
#' @param beg_date A string specifying the name of the date variable
|
||||
#' representing the hire date. Defaults to "HireDate".
|
||||
#' @param maxten A numeric value representing the maximum tenure.
|
||||
#' If the tenure exceeds this threshold, it would be accounted for in the flag message.
|
||||
#' @param return String to specify what to return.
|
||||
|
@ -95,9 +98,11 @@ identify_tenure <- function(data,
|
|||
)
|
||||
|
||||
} else if(return == "data_cleaned"){
|
||||
|
||||
return(data %>% filter(!(PersonId %in% oddpeople$PersonId)) %>% data.frame())
|
||||
|
||||
} else if(return == "data_dirty"){
|
||||
|
||||
return(data %>% filter((PersonId %in% oddpeople$PersonId)) %>% data.frame())
|
||||
|
||||
} else if(return == "data"){
|
||||
|
@ -108,7 +113,9 @@ identify_tenure <- function(data,
|
|||
select(PersonId, TenureYear)
|
||||
|
||||
} else {
|
||||
|
||||
stop("Error: please check inputs for `return`")
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
#'
|
||||
#' @description Uses `import_wpa()` to read a Workplace Analytics query in CSV
|
||||
#' and convert this into the serialized FST format which is much faster to
|
||||
#' read. The 'fst' package must be installed.
|
||||
#' read. The 'fst' package must be installed, or an error message is returned.
|
||||
#'
|
||||
#' @details
|
||||
#' The [fst](https://www.fstpackage.org/) package provides a way to serialize
|
||||
|
@ -31,6 +31,8 @@
|
|||
#' file will be saved in the same directory with a different file extension.
|
||||
#' @param ... Additional arguments to pass to `import_wpa()`.
|
||||
#'
|
||||
#' @family Import and Export
|
||||
#'
|
||||
#' @export
|
||||
import_to_fst <- function(path, ...){
|
||||
|
||||
|
|
|
@ -6,8 +6,8 @@
|
|||
#' @title Import a Workplace Analytics Query
|
||||
#'
|
||||
#' @description
|
||||
#' Import a Workplace Analytics Query from a local CSV File, with variable classifications optimised
|
||||
#' for other 'wpa' functions.
|
||||
#' Import a Workplace Analytics Query from a local CSV File, with variable
|
||||
#' classifications optimised for other 'wpa' functions.
|
||||
#'
|
||||
#' @details
|
||||
#' `import_wpa()` uses `data.table::fread()` to import CSV files for speed,
|
||||
|
@ -28,6 +28,8 @@
|
|||
#'
|
||||
#' @return A `tibble` is returned.
|
||||
#'
|
||||
#' @family Import and Export
|
||||
#'
|
||||
#' @export
|
||||
import_wpa <- function(x,
|
||||
standardise = FALSE,
|
||||
|
|
|
@ -6,9 +6,13 @@
|
|||
#' @title Plot Internal Network Breadth and Size as a scatter plot
|
||||
#'
|
||||
#' @description
|
||||
#' Plot the internal network metrics for a HR variable as a scatter plot, showing
|
||||
#' Internal Network Breadth as the vertical axis and Internal Network Size as the
|
||||
#' horizontal axis.
|
||||
#' Plot the internal network metrics for a HR variable as a scatter plot,
|
||||
#' showing Internal Network Breadth as the vertical axis and Internal Network
|
||||
#' Size as the horizontal axis.
|
||||
#'
|
||||
#' @details
|
||||
#' Uses the metrics `Internal_network_size` and
|
||||
#' `Networking_outside_organization`.
|
||||
#'
|
||||
#' @inheritParams create_bubble
|
||||
#'
|
||||
|
@ -16,7 +20,11 @@
|
|||
#' # Return plot
|
||||
#' sq_data %>% internal_network_plot(return = "plot")
|
||||
#'
|
||||
#' @family Connectivity
|
||||
#' # Return summary table
|
||||
#' sq_data %>% internal_network_plot(return = "table")
|
||||
#'
|
||||
#' @family Visualization
|
||||
#' @family Network
|
||||
#'
|
||||
#' @export
|
||||
|
||||
|
|
|
@ -6,15 +6,19 @@
|
|||
#' @title Identify whether string is a date format
|
||||
#'
|
||||
#' @description
|
||||
#' This function uses regular expression to determine whether
|
||||
#' a string is of the format "mdy", separated by "-", "/",
|
||||
#' or ".", returning a logical vector.
|
||||
#' This function uses regular expression to determine whether a string is of the
|
||||
#' format `"mdy"`, separated by `"-"`, `"/"`, or `"."`, returning a logical
|
||||
#' vector.
|
||||
#'
|
||||
#' @param string Character string to test whether is a date format.
|
||||
#'
|
||||
#' @return logical value indicating whether the string is a date format.
|
||||
#'
|
||||
#' @examples
|
||||
#' is_date_format("1/5/2020")
|
||||
#'
|
||||
#' @family Support
|
||||
#'
|
||||
#' @export
|
||||
is_date_format <- function(string){
|
||||
grepl("^\\d{1,2}[- /.]\\d{1,2}[- /.]\\d{1,4}$",
|
||||
|
|
|
@ -8,12 +8,11 @@
|
|||
#' @description
|
||||
#' Returns a heatmapped table by default, with options to return a table.
|
||||
#'
|
||||
#' @param data A Standard Person Query dataset in the form of a data frame.
|
||||
#' @param hrvar HR Variable by which to split metrics. Accepts a character vector, e.g. "Organization"
|
||||
#' @param mingroup Numeric value setting the privacy threshold / minimum group size. Defaults to 5.
|
||||
#' @param metrics A character vector containing the variable names to calculate averages of.
|
||||
#' @template spq-params
|
||||
#' @param metrics A character vector containing the variable names to calculate
|
||||
#' averages of.
|
||||
#' @param return Character vector specifying what to return, defaults to "plot".
|
||||
#' Valid inputs are "plot" and "table".
|
||||
#' Valid inputs are "plot" and "table".
|
||||
#' @param textsize A numeric value specifying the text size to show in the plot.
|
||||
#'
|
||||
#' @import dplyr
|
||||
|
@ -58,6 +57,12 @@ keymetrics_scan <- function(data,
|
|||
return = "plot",
|
||||
textsize = 2){
|
||||
|
||||
## Handling NULL values passed to hrvar
|
||||
if(is.null(hrvar)){
|
||||
data <- totals_col(data)
|
||||
hrvar <- "Total"
|
||||
}
|
||||
|
||||
myTable <-
|
||||
data %>%
|
||||
rename(group = !!sym(hrvar)) %>% # Rename HRvar to `group`
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
#' @section Metrics used:
|
||||
#' The metric `Collaboration_hours` is used in the calculations. Please ensure
|
||||
#' that your query contains a metric with the exact same name.
|
|
@ -0,0 +1,6 @@
|
|||
#' @param data A Standard Person Query dataset in the form of a data frame.
|
||||
#' @param hrvar String containing the name of the HR Variable by which to split
|
||||
#' metrics. Defaults to `"Organization"`. To run the analysis on the total
|
||||
#' instead of splitting by an HR attribute, supply `NULL` (without quotes).
|
||||
#' @param mingroup Numeric value setting the privacy threshold / minimum group
|
||||
#' size. Defaults to 5.
|
|
@ -2,7 +2,8 @@
|
|||
% Please edit documentation in R/IV_by_Period.R
|
||||
\name{IV_by_period}
|
||||
\alias{IV_by_period}
|
||||
\title{Identify the WPA metrics that have the biggest change between two periods.}
|
||||
\title{Identify the WPA metrics that have the biggest change between two
|
||||
periods.}
|
||||
\usage{
|
||||
IV_by_period(
|
||||
data,
|
||||
|
@ -16,31 +17,64 @@ IV_by_period(
|
|||
}
|
||||
\arguments{
|
||||
\item{data}{Person Query as a dataframe including date column named "Date"
|
||||
This function assumes the data format is MM/DD/YYYY as is standard in a WpA query output.}
|
||||
This function assumes the data format is \code{MM/DD/YYYY} as is standard in a
|
||||
WpA query output.}
|
||||
|
||||
\item{before_start}{Start date of "before" time period in YYYY-MM-DD. Defaults to earliest date in dataset.}
|
||||
\item{before_start}{Start date of "before" time period in \code{YYYY-MM-DD}.
|
||||
Defaults to earliest date in dataset.}
|
||||
|
||||
\item{before_end}{End date of "before" time period in YYYY-MM-DD}
|
||||
\item{before_end}{End date of "before" time period in \code{YYYY-MM-DD}}
|
||||
|
||||
\item{after_start}{Start date of "after" time period in YYYY-MM-DD. Defaults to day after before_end.}
|
||||
\item{after_start}{Start date of "after" time period in \code{YYYY-MM-DD}.
|
||||
Defaults to day after before_end.}
|
||||
|
||||
\item{after_end}{End date of "after" time period in YYYY-MM-DD. Defaults to latest date in dataset.}
|
||||
\item{after_end}{End date of "after" time period in \code{YYYY-MM-DD}. Defaults to
|
||||
latest date in dataset.}
|
||||
|
||||
\item{mybins}{Number of bins to cut the data into for Information Value analysis. Defaults to 10.}
|
||||
\item{mybins}{Number of bins to cut the data into for Information Value
|
||||
analysis. Defaults to 10.}
|
||||
|
||||
\item{return}{Specify whether to return a summary table or detailed Excel and PDF files
|
||||
Specify "table" or "detailed" for outputs. Defaults to table.}
|
||||
\item{return}{String specifying what to return. The current only valid
|
||||
option is \code{"table"}.}
|
||||
}
|
||||
\value{
|
||||
data frame containing all the variables and the corresponding Information
|
||||
Value.
|
||||
}
|
||||
\description{
|
||||
This function uses the Information Value algorithm to predict which WPA metrics are most explained by the change in dates.
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
|
||||
|
||||
This function uses the Information Value algorithm to predict
|
||||
which Workplace Analytics metrics are most explained by the change in dates.
|
||||
}
|
||||
\examples{
|
||||
# Returns a data frame
|
||||
\donttest{
|
||||
sq_data \%>\%
|
||||
IV_by_period(
|
||||
before_start = "2019-11-03",
|
||||
before_end = "2019-11-09",
|
||||
after_start = "2019-11-10",
|
||||
after_end = "2019-11-16"
|
||||
)
|
||||
}
|
||||
|
||||
}
|
||||
\seealso{
|
||||
Other Flexible Input:
|
||||
\code{\link{period_change}()}
|
||||
Other Variable Association:
|
||||
\code{\link{IV_report}()},
|
||||
\code{\link{create_IV}()}
|
||||
|
||||
Other Information Value:
|
||||
\code{\link{IV_report}()},
|
||||
\code{\link{create_IV}()}
|
||||
|
||||
Other Time-series:
|
||||
\code{\link{create_line_asis}()},
|
||||
\code{\link{create_line}()},
|
||||
\code{\link{create_period_scatter}()},
|
||||
\code{\link{create_trend}()}
|
||||
}
|
||||
\concept{Flexible Input}
|
||||
\concept{Information Value}
|
||||
\concept{Time-series}
|
||||
\concept{Variable Association}
|
||||
|
|
|
@ -64,9 +64,14 @@ Other Reports:
|
|||
\code{\link{subject_validate_report}()},
|
||||
\code{\link{validation_report}()}
|
||||
|
||||
Other Variable Association:
|
||||
\code{\link{IV_by_period}()},
|
||||
\code{\link{create_IV}()}
|
||||
|
||||
Other Information Value:
|
||||
\code{\link{IV_by_period}()},
|
||||
\code{\link{create_IV}()}
|
||||
}
|
||||
\concept{Information Value}
|
||||
\concept{Reports}
|
||||
\concept{Variable Association}
|
||||
|
|
|
@ -95,7 +95,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other After-hours Collaboration:
|
||||
\code{\link{afterhours_fizz}()},
|
||||
|
|
|
@ -79,7 +79,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other After-hours Collaboration:
|
||||
\code{\link{afterhours_dist}()},
|
||||
|
|
|
@ -83,7 +83,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other After-hours Collaboration:
|
||||
\code{\link{afterhours_dist}()},
|
||||
|
|
|
@ -70,7 +70,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other After-hours Collaboration:
|
||||
\code{\link{afterhours_dist}()},
|
||||
|
|
|
@ -12,12 +12,15 @@ afterhours_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
|
|||
\arguments{
|
||||
\item{data}{A Standard Person Query dataset in the form of a data frame.}
|
||||
|
||||
\item{hrvar}{HR Variable by which to split metrics, defaults to "Organization"
|
||||
but accepts any character vector, e.g. "LevelDesignation"}
|
||||
\item{hrvar}{String containing the name of the HR Variable by which to split
|
||||
metrics. Defaults to \code{"Organization"}. To run the analysis on the total
|
||||
instead of splitting by an HR attribute, supply \code{NULL} (without quotes).}
|
||||
|
||||
\item{mingroup}{Numeric value setting the privacy threshold / minimum group size. Defaults to 5.}
|
||||
\item{mingroup}{Numeric value setting the privacy threshold / minimum group
|
||||
size. Defaults to 5.}
|
||||
|
||||
\item{return}{String specifying what to return. This must be one of the following strings:
|
||||
\item{return}{String specifying what to return. This must be one of the
|
||||
following strings:
|
||||
\itemize{
|
||||
\item \code{"plot"}
|
||||
\item \code{"table"}
|
||||
|
@ -83,7 +86,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other After-hours Collaboration:
|
||||
\code{\link{afterhours_dist}()},
|
||||
|
|
|
@ -72,7 +72,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other After-hours Collaboration:
|
||||
\code{\link{afterhours_dist}()},
|
||||
|
|
|
@ -26,6 +26,8 @@ Other Support:
|
|||
\code{\link{cut_hour}()},
|
||||
\code{\link{extract_date_range}()},
|
||||
\code{\link{extract_hr}()},
|
||||
\code{\link{heat_colours}()},
|
||||
\code{\link{is_date_format}()},
|
||||
\code{\link{rgb2hex}()}
|
||||
}
|
||||
\concept{Support}
|
||||
|
|
|
@ -45,6 +45,8 @@ Other Support:
|
|||
\code{\link{cut_hour}()},
|
||||
\code{\link{extract_date_range}()},
|
||||
\code{\link{extract_hr}()},
|
||||
\code{\link{heat_colours}()},
|
||||
\code{\link{is_date_format}()},
|
||||
\code{\link{rgb2hex}()}
|
||||
}
|
||||
\concept{Support}
|
||||
|
|
|
@ -61,12 +61,15 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -92,7 +92,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Collaboration:
|
||||
\code{\link{collaboration_dist}()},
|
||||
|
|
|
@ -55,9 +55,12 @@ Analyze the distribution of Collaboration Hours.
|
|||
Returns a stacked bar plot by default.
|
||||
Additional options available to return a table with distribution elements.
|
||||
}
|
||||
\details{
|
||||
Uses the metric \code{Collaboration_hours}.
|
||||
\section{Metrics used}{
|
||||
|
||||
The metric \code{Collaboration_hours} is used in the calculations. Please ensure
|
||||
that your query contains a metric with the exact same name.
|
||||
}
|
||||
|
||||
\examples{
|
||||
# Return plot
|
||||
collaboration_dist(sq_data, hrvar = "Organization")
|
||||
|
@ -100,7 +103,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Collaboration:
|
||||
\code{\link{collaboration_area}()},
|
||||
|
|
|
@ -36,9 +36,12 @@ Analyze weekly collaboration hours distribution, and returns
|
|||
a 'fizzy' scatter plot by default.
|
||||
Additional options available to return a table with distribution elements.
|
||||
}
|
||||
\details{
|
||||
Uses the metric \code{Collaboration_hours}.
|
||||
\section{Metrics used}{
|
||||
|
||||
The metric \code{Collaboration_hours} is used in the calculations. Please ensure
|
||||
that your query contains a metric with the exact same name.
|
||||
}
|
||||
|
||||
\examples{
|
||||
# Return plot
|
||||
collaboration_fizz(sq_data, hrvar = "Organization", return = "plot")
|
||||
|
@ -82,7 +85,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Collaboration:
|
||||
\code{\link{collaboration_area}()},
|
||||
|
|
|
@ -38,9 +38,12 @@ By default returns a line chart for collaboration hours,
|
|||
with a separate panel per value in the HR attribute.
|
||||
Additional options available to return a summary table.
|
||||
}
|
||||
\details{
|
||||
Uses the metric \code{Collaboration_hours}.
|
||||
\section{Metrics used}{
|
||||
|
||||
The metric \code{Collaboration_hours} is used in the calculations. Please ensure
|
||||
that your query contains a metric with the exact same name.
|
||||
}
|
||||
|
||||
\examples{
|
||||
# Return a line plot
|
||||
collaboration_line(sq_data, hrvar = "LevelDesignation")
|
||||
|
@ -84,7 +87,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Collaboration:
|
||||
\code{\link{collaboration_area}()},
|
||||
|
|
|
@ -78,7 +78,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Collaboration:
|
||||
\code{\link{collaboration_area}()},
|
||||
|
|
|
@ -78,7 +78,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Collaboration:
|
||||
\code{\link{collaboration_area}()},
|
||||
|
|
|
@ -31,9 +31,12 @@ Provides a week by week view of collaboration time.
|
|||
By default returns a week by week heatmap, highlighting the points in time with most activity.
|
||||
Additional options available to return a summary table.
|
||||
}
|
||||
\details{
|
||||
Uses the metric \code{Collaboration_hours}.
|
||||
\section{Metrics used}{
|
||||
|
||||
The metric \code{Collaboration_hours} is used in the calculations. Please ensure
|
||||
that your query contains a metric with the exact same name.
|
||||
}
|
||||
|
||||
\seealso{
|
||||
Other Visualization:
|
||||
\code{\link{afterhours_dist}()},
|
||||
|
@ -69,7 +72,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Collaboration:
|
||||
\code{\link{collaboration_area}()},
|
||||
|
|
|
@ -40,6 +40,8 @@ Other Support:
|
|||
\code{\link{cut_hour}()},
|
||||
\code{\link{extract_date_range}()},
|
||||
\code{\link{extract_hr}()},
|
||||
\code{\link{heat_colours}()},
|
||||
\code{\link{is_date_format}()},
|
||||
\code{\link{rgb2hex}()}
|
||||
}
|
||||
\concept{Support}
|
||||
|
|
|
@ -30,6 +30,8 @@ https://www.github.com/martinctc/surveytoolbox.
|
|||
\seealso{
|
||||
Other Import and Export:
|
||||
\code{\link{create_dt}()},
|
||||
\code{\link{export}()}
|
||||
\code{\link{export}()},
|
||||
\code{\link{import_to_fst}()},
|
||||
\code{\link{import_wpa}()}
|
||||
}
|
||||
\concept{Import and Export}
|
||||
|
|
|
@ -77,6 +77,10 @@ sq_data \%>\%
|
|||
}
|
||||
}
|
||||
\seealso{
|
||||
Other Variable Association:
|
||||
\code{\link{IV_by_period}()},
|
||||
\code{\link{IV_report}()}
|
||||
|
||||
Other Information Value:
|
||||
\code{\link{IV_by_period}()},
|
||||
\code{\link{IV_report}()}
|
||||
|
|
|
@ -17,15 +17,15 @@ create_bar(
|
|||
\arguments{
|
||||
\item{data}{A Standard Person Query dataset in the form of a data frame.}
|
||||
|
||||
\item{metric}{Character string containing the name of the metric,
|
||||
e.g. "Collaboration_hours"}
|
||||
\item{hrvar}{String containing the name of the HR Variable by which to split
|
||||
metrics. Defaults to \code{"Organization"}. To run the analysis on the total
|
||||
instead of splitting by an HR attribute, supply \code{NULL} (without quotes).}
|
||||
|
||||
\item{hrvar}{HR Variable by which to split metrics, defaults to "Organization"
|
||||
but accepts any character vector, e.g. "LevelDesignation"}
|
||||
\item{mingroup}{Numeric value setting the privacy threshold / minimum group
|
||||
size. Defaults to 5.}
|
||||
|
||||
\item{mingroup}{Numeric value setting the privacy threshold / minimum group size. Defaults to 5.}
|
||||
|
||||
\item{return}{String specifying what to return. This must be one of the following strings:
|
||||
\item{return}{String specifying what to return. This must be one of the
|
||||
following strings:
|
||||
\itemize{
|
||||
\item \code{"plot"}
|
||||
\item \code{"table"}
|
||||
|
@ -49,7 +49,8 @@ A different output is returned depending on the value passed to the \code{return
|
|||
}
|
||||
}
|
||||
\description{
|
||||
Provides an overview analysis of a selected metric by calculating a mean per metric.
|
||||
Provides an overview analysis of a selected metric by calculating a mean per
|
||||
metric.
|
||||
Returns a bar plot showing the average of a selected metric by default.
|
||||
Additional options available to return a summary table.
|
||||
}
|
||||
|
@ -103,7 +104,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
|
|
@ -127,7 +127,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar}()},
|
||||
|
|
|
@ -103,7 +103,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
|
|
@ -100,7 +100,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
|
|
@ -100,7 +100,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
|
|
@ -20,6 +20,8 @@ See https://martinctc.github.io/blog/vignette-downloadable-tables-in-rmarkdown-w
|
|||
\seealso{
|
||||
Other Import and Export:
|
||||
\code{\link{copy_df}()},
|
||||
\code{\link{export}()}
|
||||
\code{\link{export}()},
|
||||
\code{\link{import_to_fst}()},
|
||||
\code{\link{import_wpa}()}
|
||||
}
|
||||
\concept{Import and Export}
|
||||
|
|
|
@ -90,7 +90,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
|
|
@ -94,7 +94,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
@ -113,6 +115,7 @@ Other Flexible:
|
|||
\code{\link{create_trend}()}
|
||||
|
||||
Other Time-series:
|
||||
\code{\link{IV_by_period}()},
|
||||
\code{\link{create_line_asis}()},
|
||||
\code{\link{create_period_scatter}()},
|
||||
\code{\link{create_trend}()}
|
||||
|
|
|
@ -98,7 +98,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
@ -117,6 +119,7 @@ Other Flexible:
|
|||
\code{\link{create_trend}()}
|
||||
|
||||
Other Time-series:
|
||||
\code{\link{IV_by_period}()},
|
||||
\code{\link{create_line}()},
|
||||
\code{\link{create_period_scatter}()},
|
||||
\code{\link{create_trend}()}
|
||||
|
|
|
@ -108,7 +108,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
@ -127,6 +129,7 @@ Other Flexible:
|
|||
\code{\link{create_trend}()}
|
||||
|
||||
Other Time-series:
|
||||
\code{\link{IV_by_period}()},
|
||||
\code{\link{create_line_asis}()},
|
||||
\code{\link{create_line}()},
|
||||
\code{\link{create_trend}()}
|
||||
|
|
|
@ -118,7 +118,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
|
|
@ -75,7 +75,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
|
|
@ -91,7 +91,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
|
|
@ -104,7 +104,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
|
|
@ -75,7 +75,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Flexible:
|
||||
\code{\link{create_bar_asis}()},
|
||||
|
@ -94,6 +96,7 @@ Other Flexible:
|
|||
\code{\link{create_stacked}()}
|
||||
|
||||
Other Time-series:
|
||||
\code{\link{IV_by_period}()},
|
||||
\code{\link{create_line_asis}()},
|
||||
\code{\link{create_line}()},
|
||||
\code{\link{create_period_scatter}()}
|
||||
|
|
|
@ -36,6 +36,8 @@ Other Support:
|
|||
\code{\link{combine_signals}()},
|
||||
\code{\link{extract_date_range}()},
|
||||
\code{\link{extract_hr}()},
|
||||
\code{\link{heat_colours}()},
|
||||
\code{\link{is_date_format}()},
|
||||
\code{\link{rgb2hex}()}
|
||||
}
|
||||
\concept{Support}
|
||||
|
|
|
@ -92,7 +92,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Emails:
|
||||
\code{\link{email_fizz}()},
|
||||
|
|
|
@ -77,7 +77,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Emails:
|
||||
\code{\link{email_dist}()},
|
||||
|
|
|
@ -78,7 +78,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Emails:
|
||||
\code{\link{email_dist}()},
|
||||
|
|
|
@ -78,7 +78,9 @@ Other Visualization:
|
|||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Emails:
|
||||
\code{\link{email_dist}()},
|
||||
|
|
|
@ -12,12 +12,15 @@ email_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
|
|||
\arguments{
|
||||
\item{data}{A Standard Person Query dataset in the form of a data frame.}
|
||||
|
||||
\item{hrvar}{HR Variable by which to split metrics, defaults to "Organization"
|
||||
but accepts any character vector, e.g. "LevelDesignation"}
|
||||
\item{hrvar}{String containing the name of the HR Variable by which to split
|
||||
metrics. Defaults to \code{"Organization"}. To run the analysis on the total
|
||||
instead of splitting by an HR attribute, supply \code{NULL} (without quotes).}
|
||||
|
||||
\item{mingroup}{Numeric value setting the privacy threshold / minimum group size. Defaults to 5.}
|
||||
\item{mingroup}{Numeric value setting the privacy threshold / minimum group
|
||||
size. Defaults to 5.}
|
||||
|
||||
\item{return}{String specifying what to return. This must be one of the following strings:
|
||||
\item{return}{String specifying what to return. This must be one of the
|
||||
following strings:
|
||||
\itemize{
|
||||
\item \code{"plot"}
|
||||
\item \code{"table"}
|
||||
|
@ -80,7 +83,9 @@ Other Visualization:
|
|||
\code{\link{email_rank}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Emails:
|
||||
\code{\link{email_dist}()},
|
||||
|
|
|
@ -64,7 +64,9 @@ Other Visualization:
|
|||
\code{\link{email_rank}()},
|
||||
\code{\link{email_summary}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Emails:
|
||||
\code{\link{email_dist}()},
|
||||
|
|
|
@ -58,6 +58,8 @@ the default behaviour is to export a PNG.
|
|||
\seealso{
|
||||
Other Import and Export:
|
||||
\code{\link{copy_df}()},
|
||||
\code{\link{create_dt}()}
|
||||
\code{\link{create_dt}()},
|
||||
\code{\link{import_to_fst}()},
|
||||
\code{\link{import_wpa}()}
|
||||
}
|
||||
\concept{Import and Export}
|
||||
|
|
|
@ -75,10 +75,13 @@ Other Visualization:
|
|||
\code{\link{email_rank}()},
|
||||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Network:
|
||||
\code{\link{g2g_data}},
|
||||
\code{\link{internal_network_plot}()},
|
||||
\code{\link{network_g2g}()},
|
||||
\code{\link{network_leiden}()},
|
||||
\code{\link{network_louvain}()},
|
||||
|
|
|
@ -27,6 +27,8 @@ Other Support:
|
|||
\code{\link{combine_signals}()},
|
||||
\code{\link{cut_hour}()},
|
||||
\code{\link{extract_hr}()},
|
||||
\code{\link{heat_colours}()},
|
||||
\code{\link{is_date_format}()},
|
||||
\code{\link{rgb2hex}()}
|
||||
}
|
||||
\concept{Support}
|
||||
|
|
|
@ -52,6 +52,8 @@ Other Support:
|
|||
\code{\link{combine_signals}()},
|
||||
\code{\link{cut_hour}()},
|
||||
\code{\link{extract_date_range}()},
|
||||
\code{\link{heat_colours}()},
|
||||
\code{\link{is_date_format}()},
|
||||
\code{\link{rgb2hex}()}
|
||||
|
||||
Other Data Validation:
|
||||
|
@ -63,12 +65,15 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -35,6 +35,12 @@ This function flags persons who have an unusual ratio
|
|||
of collaboration hours to after-hours collaboration hours.
|
||||
Returns a character string by default.
|
||||
}
|
||||
\section{Metrics used}{
|
||||
|
||||
The metric \code{Collaboration_hours} is used in the calculations. Please ensure
|
||||
that your query contains a metric with the exact same name.
|
||||
}
|
||||
|
||||
\examples{
|
||||
flag_ch_ratio(sq_data)
|
||||
|
||||
|
@ -55,12 +61,15 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -50,12 +50,15 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -62,12 +62,15 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -63,12 +63,15 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -130,6 +130,7 @@ em_data \%>\%
|
|||
\seealso{
|
||||
Other Working Patterns:
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{plot_flex_index}()},
|
||||
\code{\link{workpatterns_area}()},
|
||||
\code{\link{workpatterns_classify_bw}()},
|
||||
|
|
|
@ -35,6 +35,7 @@ Other Data:
|
|||
|
||||
Other Network:
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{internal_network_plot}()},
|
||||
\code{\link{network_g2g}()},
|
||||
\code{\link{network_leiden}()},
|
||||
\code{\link{network_louvain}()},
|
||||
|
|
|
@ -2,9 +2,12 @@
|
|||
% Please edit documentation in R/heat_colours.R
|
||||
\name{heat_colours}
|
||||
\alias{heat_colours}
|
||||
\alias{heat_colors}
|
||||
\title{Generate a vector of \code{n} contiguous colours, as a red-yellow-green palette.}
|
||||
\usage{
|
||||
heat_colours(n, alpha, rev = FALSE)
|
||||
|
||||
heat_colors(n, alpha, rev = FALSE)
|
||||
}
|
||||
\arguments{
|
||||
\item{n}{the number of colors (>= 1) to be in the palette.}
|
||||
|
@ -12,7 +15,8 @@ heat_colours(n, alpha, rev = FALSE)
|
|||
\item{alpha}{an alpha-transparency level in the range of 0 to 1
|
||||
(0 means transparent and 1 means opaque)}
|
||||
|
||||
\item{rev}{logical indicating whether the ordering of the colors should be reversed.}
|
||||
\item{rev}{logical indicating whether the ordering of the colors should be
|
||||
reversed.}
|
||||
}
|
||||
\value{
|
||||
A character vector containing the HEX codes and the same length as \code{n} is
|
||||
|
@ -25,6 +29,19 @@ corresponding to the heat map palette.
|
|||
\examples{
|
||||
barplot(rep(10, 50), col = heat_colours(n = 50), border = NA)
|
||||
|
||||
barplot(rep(10, 50), col = heat_colours(n = 50, alpha = 0.5, rev = TRUE), border = NA)
|
||||
barplot(rep(10, 50), col = heat_colours(n = 50, alpha = 0.5, rev = TRUE),
|
||||
border = NA)
|
||||
|
||||
}
|
||||
\seealso{
|
||||
Other Support:
|
||||
\code{\link{camel_clean}()},
|
||||
\code{\link{check_inputs}()},
|
||||
\code{\link{combine_signals}()},
|
||||
\code{\link{cut_hour}()},
|
||||
\code{\link{extract_date_range}()},
|
||||
\code{\link{extract_hr}()},
|
||||
\code{\link{is_date_format}()},
|
||||
\code{\link{rgb2hex}()}
|
||||
}
|
||||
\concept{Support}
|
||||
|
|
|
@ -40,6 +40,44 @@ hr_trend(dv_data, return = "table")
|
|||
|
||||
}
|
||||
\seealso{
|
||||
Other Visualization:
|
||||
\code{\link{afterhours_dist}()},
|
||||
\code{\link{afterhours_fizz}()},
|
||||
\code{\link{afterhours_line}()},
|
||||
\code{\link{afterhours_rank}()},
|
||||
\code{\link{afterhours_summary}()},
|
||||
\code{\link{afterhours_trend}()},
|
||||
\code{\link{collaboration_area}()},
|
||||
\code{\link{collaboration_dist}()},
|
||||
\code{\link{collaboration_fizz}()},
|
||||
\code{\link{collaboration_line}()},
|
||||
\code{\link{collaboration_rank}()},
|
||||
\code{\link{collaboration_sum}()},
|
||||
\code{\link{collaboration_trend}()},
|
||||
\code{\link{create_bar_asis}()},
|
||||
\code{\link{create_bar}()},
|
||||
\code{\link{create_boxplot}()},
|
||||
\code{\link{create_bubble}()},
|
||||
\code{\link{create_dist}()},
|
||||
\code{\link{create_fizz}()},
|
||||
\code{\link{create_line_asis}()},
|
||||
\code{\link{create_line}()},
|
||||
\code{\link{create_period_scatter}()},
|
||||
\code{\link{create_rank}()},
|
||||
\code{\link{create_sankey}()},
|
||||
\code{\link{create_scatter}()},
|
||||
\code{\link{create_stacked}()},
|
||||
\code{\link{create_trend}()},
|
||||
\code{\link{email_dist}()},
|
||||
\code{\link{email_fizz}()},
|
||||
\code{\link{email_line}()},
|
||||
\code{\link{email_rank}()},
|
||||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Data Validation:
|
||||
\code{\link{check_query}()},
|
||||
\code{\link{extract_hr}()},
|
||||
|
@ -49,12 +87,15 @@ Other Data Validation:
|
|||
\code{\link{flag_outlooktime}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
@ -62,3 +103,4 @@ Other Data Validation:
|
|||
\code{\link{track_HR_change}()}
|
||||
}
|
||||
\concept{Data Validation}
|
||||
\concept{Visualization}
|
||||
|
|
|
@ -12,10 +12,10 @@ analysis_scope(data, hrvar = "Organization", return = "plot")
|
|||
\arguments{
|
||||
\item{data}{A Standard Person Query dataset in the form of a data frame.}
|
||||
|
||||
\item{hrvar}{HR Variable by which to split metrics, defaults to "Organization"
|
||||
but accepts any character vector, e.g. "LevelDesignation".
|
||||
If a vector with more than one value is provided, the HR attributes are automatically
|
||||
concatenated.}
|
||||
\item{hrvar}{HR Variable by which to split metrics, defaults to
|
||||
"Organization" but accepts any character vector, e.g. "LevelDesignation".
|
||||
If a vector with more than one value is provided, the HR attributes are
|
||||
automatically concatenated.}
|
||||
|
||||
\item{return}{String specifying what to return. This must be one of the
|
||||
following strings:
|
||||
|
@ -82,7 +82,9 @@ Other Visualization:
|
|||
\code{\link{email_rank}()},
|
||||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()}
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{internal_network_plot}()}
|
||||
|
||||
Other Data Validation:
|
||||
\code{\link{check_query}()},
|
||||
|
@ -93,12 +95,15 @@ Other Data Validation:
|
|||
\code{\link{flag_outlooktime}()},
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -2,7 +2,8 @@
|
|||
% Please edit documentation in R/hrvar_count_all.R
|
||||
\name{hrvar_count_all}
|
||||
\alias{hrvar_count_all}
|
||||
\title{Create count of distinct fields and percentage of employees with NAs for all HR variables}
|
||||
\title{Create count of distinct fields and percentage of employees with
|
||||
missing values for all HR variables}
|
||||
\usage{
|
||||
hrvar_count_all(
|
||||
data,
|
||||
|
@ -15,25 +16,34 @@ hrvar_count_all(
|
|||
\arguments{
|
||||
\item{data}{A Standard Person Query dataset in the form of a data frame.}
|
||||
|
||||
\item{n_var}{number of HR variables to include in report as rows. Default is set to 10 HR variables.}
|
||||
\item{n_var}{number of HR variables to include in report as rows. Default is
|
||||
set to 50 HR variables.}
|
||||
|
||||
\item{return}{String to specify what to return}
|
||||
|
||||
\item{threshold}{The max number of unique values allowed for any attribute. Default is 100.}
|
||||
\item{threshold}{The max number of unique values allowed for any attribute.
|
||||
Default is 100.}
|
||||
|
||||
\item{maxna}{The max percentage of NAs allowable for any column. Default is 20.}
|
||||
\item{maxna}{The max percentage of NAs allowable for any column. Default is
|
||||
20.}
|
||||
}
|
||||
\value{
|
||||
Returns an error message by default, where 'text' is passed in \code{return}.
|
||||
When 'table' is passed, a summary table listing the number of distinct fields and percentage of NAs for the specified number of HR attributes will be returned.
|
||||
when 'message' is passed, outputs a message indicating which values are beyond the specified thresholds.
|
||||
\itemize{
|
||||
\item \code{'table'}: data frame. A summary table listing the number of distinct
|
||||
fields and percentage of missing values for the specified number of HR
|
||||
attributes will be returned.
|
||||
\item \code{'message'}: outputs a message indicating which values are
|
||||
beyond the specified thresholds.
|
||||
}
|
||||
}
|
||||
\description{
|
||||
This function enables you to create a summary table to validate organizational data. This table will provide a summary of the data found
|
||||
in the WpA Sources page.
|
||||
This function will return a summary table with the count of distinct fields per HR attribute and the percentage of
|
||||
employees with NAs for that attribute.
|
||||
See hrvar_count function for more detail on the specific HR attribute of interest.
|
||||
This function enables you to create a summary table to validate
|
||||
organizational data. This table will provide a summary of the data found in
|
||||
the Workplace Analytics Sources page. This function will return a summary
|
||||
table with the count of distinct fields per HR attribute and the percentage
|
||||
of employees with missing values for that attribute. See \code{hrvar_count()}
|
||||
function for more detail on the specific HR attribute of interest.
|
||||
}
|
||||
\examples{
|
||||
# Return a summary table of all HR attributes
|
||||
|
@ -50,12 +60,15 @@ Other Data Validation:
|
|||
\code{\link{flag_outlooktime}()},
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -9,40 +9,86 @@ identify_churn(data, n1 = 6, n2 = 6, return = "message", flip = FALSE)
|
|||
\arguments{
|
||||
\item{data}{A Person Query as a data frame. Must contain a \code{PersonId}.}
|
||||
|
||||
\item{n1}{A numeric value specifying the number of weeks at the beginning of the period
|
||||
that defines the measured employee set. Defaults to 6.}
|
||||
\item{n1}{A numeric value specifying the number of weeks at the beginning of
|
||||
the period that defines the measured employee set. Defaults to 6.}
|
||||
|
||||
\item{n2}{A numeric value specifying the number of weeks at the end of the period
|
||||
to calculate whether employees have churned from the data. Defaults to 6.}
|
||||
\item{n2}{A numeric value specifying the number of weeks at the end of the
|
||||
period to calculate whether employees have churned from the data. Defaults
|
||||
to 6.}
|
||||
|
||||
\item{return}{String specifying what to return. Defaults to "message", with options to
|
||||
return a character string ("text") or the \code{PersonId} of employees who have been identified
|
||||
as churned ("data").}
|
||||
\item{return}{String specifying what to return. This must be one of the
|
||||
following strings:
|
||||
\itemize{
|
||||
\item \code{"message"} (default)
|
||||
\item \code{"text"}
|
||||
\item \code{"data"}
|
||||
}
|
||||
|
||||
\item{flip}{Logical, defaults to FALSE. This determines whether to reverse the logic of identifying the
|
||||
non-overlapping set. If set to \code{TRUE}, this effectively identifies new-joiners, or those
|
||||
who were not present in the first n weeks of the data but were present in the final n weeks.}
|
||||
See \code{Value} for more information.}
|
||||
|
||||
\item{flip}{Logical, defaults to FALSE. This determines whether to reverse
|
||||
the logic of identifying the non-overlapping set. If set to \code{TRUE}, this
|
||||
effectively identifies new-joiners, or those who were not present in the
|
||||
first n weeks of the data but were present in the final n weeks.}
|
||||
}
|
||||
\value{
|
||||
A different output is returned depending on the value passed to the \code{return}
|
||||
argument:
|
||||
\itemize{
|
||||
\item \code{"message"}: Message on console. A diagnostic message.
|
||||
\item \code{"text"}: String. A diagnostic message.
|
||||
\item \code{"data"}: Character vector containing the the \code{PersonId} of
|
||||
employees who have been identified as churned.
|
||||
}
|
||||
}
|
||||
\description{
|
||||
This function identifies and counts the number of employees who have churned from
|
||||
the dataset by measuring whether an employee who is present in the first \code{n} (n1) weeks
|
||||
of the data is present in the last \code{n} (n2) weeks of the data.
|
||||
This function identifies and counts the number of employees who have churned
|
||||
from the dataset by measuring whether an employee who is present in the first
|
||||
\code{n} (n1) weeks of the data is present in the last \code{n} (n2) weeks of the data.
|
||||
}
|
||||
\details{
|
||||
An additional use case of this function is the ability to identify "new-joiners" by using
|
||||
the argument \code{flip}.
|
||||
An additional use case of this function is the ability to identify
|
||||
"new-joiners" by using the argument \code{flip}.
|
||||
|
||||
If an employee is present in the first \code{n} weeks of the data but not present in the last
|
||||
\code{n} weeks of the data, the function considers the employee as churned. As the measurement period
|
||||
is defined by the number of weeks from the start and the end of the passed data frame, you
|
||||
may consider filtering the dates accordingly before running this function.
|
||||
If an employee is present in the first \code{n} weeks of the data but not present
|
||||
in the last \code{n} weeks of the data, the function considers the employee as
|
||||
churned. As the measurement period is defined by the number of weeks from the
|
||||
start and the end of the passed data frame, you may consider filtering the
|
||||
dates accordingly before running this function.
|
||||
|
||||
Another assumption that is in place is that any employee whose \code{PersonId} is not available in the
|
||||
data has churned. Note that there may be other reasons why an employee's \code{PersonId} may not
|
||||
be present, e.g. maternity/paternity leave, Workplace Analytics license has been removed,
|
||||
shift to a low-collaboration role (to the extent that he/she becomes inactive).
|
||||
Another assumption that is in place is that any employee whose \code{PersonId} is
|
||||
not available in the data has churned. Note that there may be other reasons
|
||||
why an employee's \code{PersonId} may not be present, e.g. maternity/paternity
|
||||
leave, Workplace Analytics license has been removed, shift to a
|
||||
low-collaboration role (to the extent that he/she becomes inactive).
|
||||
}
|
||||
\examples{
|
||||
sq_data \%>\% identify_churn(n1 = 3, n2 = 3, return = "message")
|
||||
|
||||
}
|
||||
\seealso{
|
||||
Other Data Validation:
|
||||
\code{\link{check_query}()},
|
||||
\code{\link{extract_hr}()},
|
||||
\code{\link{flag_ch_ratio}()},
|
||||
\code{\link{flag_em_ratio}()},
|
||||
\code{\link{flag_extreme}()},
|
||||
\code{\link{flag_outlooktime}()},
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
\code{\link{subject_validate}()},
|
||||
\code{\link{track_HR_change}()}
|
||||
}
|
||||
\concept{Data Validation}
|
||||
|
|
|
@ -9,25 +9,53 @@ identify_holidayweeks(data, sd = 1, return = "message")
|
|||
\arguments{
|
||||
\item{data}{A Standard Person Query dataset in the form of a data frame.}
|
||||
|
||||
\item{sd}{The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.}
|
||||
\item{sd}{The standard deviation below the mean for collaboration hours that
|
||||
should define an outlier week. Enter a positive number. Default is 1
|
||||
standard deviation.
|
||||
|
||||
\item{return}{String to specify what to return. Returns a message by default (\code{return} = "message").
|
||||
Valid options are:
|
||||
#' @param return String specifying what to return. This must be one of the
|
||||
following strings:
|
||||
\itemize{
|
||||
\item When 'message' is passed, a message is printed identifying holiday weeks.
|
||||
\item When 'data' is passed, a dataset with outlier weeks flagged in a new column is returned as a dataframe.
|
||||
\item When 'data_cleaned' is passed, a dataset with outlier weeks removed is returned as a dataframe.
|
||||
\item when 'data_dirty' is passed, a dataset with only outlier weeks is returned as a dataframe.
|
||||
\item when 'plot' is passed, a plot with holiday weeks highlighted is returned as a dataframe.
|
||||
}}
|
||||
\item \code{"message"} (default)
|
||||
\item \code{"data"}
|
||||
\item \code{"data_cleaned"}
|
||||
\item \code{"data_dirty"}
|
||||
\item \code{"plot"}
|
||||
}
|
||||
|
||||
See \code{Value} for more information.}
|
||||
}
|
||||
\value{
|
||||
A different output is returned depending on the value passed to the \code{return}
|
||||
argument:
|
||||
\itemize{
|
||||
\item \code{"message"}: message on console. a message is printed identifying holiday
|
||||
weeks.
|
||||
\item \code{"data"}: data frame. A dataset with outlier weeks flagged in a new
|
||||
column is returned as a dataframe.
|
||||
\item \code{"data_cleaned"}: data frame. A dataset with outlier weeks removed is
|
||||
returned.
|
||||
\item \code{"data_dirty"}: data frame. A dataset with only outlier weeks is
|
||||
returned.
|
||||
\item \code{"plot"}: ggplot object. A line plot of Collaboration Hours with holiday
|
||||
weeks highlighted.
|
||||
}
|
||||
}
|
||||
\description{
|
||||
This function scans a standard query output for weeks where collaboration hours is far outside the mean.
|
||||
Returns a list of weeks that appear to be holiday weeks and optionally an edited dataframe with outliers removed.
|
||||
By default, missing values are excluded.
|
||||
This function scans a standard query output for weeks where collaboration
|
||||
hours is far outside the mean. Returns a list of weeks that appear to be
|
||||
holiday weeks and optionally an edited dataframe with outliers removed. By
|
||||
default, missing values are excluded.
|
||||
|
||||
As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.
|
||||
As best practice, run this function prior to any analysis to remove atypical
|
||||
collaboration weeks from your dataset.
|
||||
}
|
||||
\section{Metrics used}{
|
||||
|
||||
The metric \code{Collaboration_hours} is used in the calculations. Please ensure
|
||||
that your query contains a metric with the exact same name.
|
||||
}
|
||||
|
||||
\examples{
|
||||
# Return a message by default
|
||||
identify_holidayweeks(sq_data)
|
||||
|
@ -35,7 +63,6 @@ identify_holidayweeks(sq_data)
|
|||
# Return plot
|
||||
identify_holidayweeks(sq_data, return = "plot")
|
||||
|
||||
|
||||
}
|
||||
\seealso{
|
||||
Other Data Validation:
|
||||
|
@ -48,11 +75,14 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -9,20 +9,34 @@ identify_inactiveweeks(data, sd = 2, return = "text")
|
|||
\arguments{
|
||||
\item{data}{A Standard Person Query dataset in the form of a data frame.}
|
||||
|
||||
\item{sd}{The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation.}
|
||||
\item{sd}{The standard deviation below the mean for collaboration hours that
|
||||
should define an outlier week. Enter a positive number. Default is 1
|
||||
standard deviation.}
|
||||
|
||||
\item{return}{String to specify what to return.}
|
||||
\item{return}{String specifying what to return. This must be one of the
|
||||
following strings:
|
||||
\itemize{
|
||||
\item \code{"text"}
|
||||
\item \code{"data_cleaned"}
|
||||
\item \code{"data_dirty"}
|
||||
}
|
||||
|
||||
See \code{Value} for more information.}
|
||||
}
|
||||
\value{
|
||||
Returns an error message by default, where 'text' is returned.
|
||||
When 'data_cleaned' is passed, a dataset with outlier weeks removed is returned as a dataframe.
|
||||
When 'data_dirty' is passed, a dataset with outlier weeks is returned as a dataframe.
|
||||
Returns an error message by default, where \code{'text'} is returned. When
|
||||
\code{'data_cleaned'} is passed, a dataset with outlier weeks removed is returned
|
||||
as a dataframe. When \code{'data_dirty'} is passed, a dataset with outlier weeks
|
||||
is returned as a dataframe.
|
||||
}
|
||||
\description{
|
||||
This function scans a standard query output for weeks where collaboration hours is far outside the mean for any individual person in the dataset.
|
||||
Returns a list of weeks that appear to be inactive weeks and optionally an edited dataframe with outliers removed.
|
||||
This function scans a standard query output for weeks where collaboration
|
||||
hours is far outside the mean for any individual person in the dataset.
|
||||
Returns a list of weeks that appear to be inactive weeks and optionally an
|
||||
edited dataframe with outliers removed.
|
||||
|
||||
As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.
|
||||
As best practice, run this function prior to any analysis to remove atypical
|
||||
collaboration weeks from your dataset.
|
||||
}
|
||||
\seealso{
|
||||
Other Data Validation:
|
||||
|
@ -35,11 +49,14 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -2,27 +2,49 @@
|
|||
% Please edit documentation in R/identify_nkw.R
|
||||
\name{identify_nkw}
|
||||
\alias{identify_nkw}
|
||||
\title{Identify Non-Knowledge workers in a Person Query using Collaboration Hours}
|
||||
\title{Identify Non-Knowledge workers in a Person Query using Collaboration
|
||||
Hours}
|
||||
\usage{
|
||||
identify_nkw(data, collab_threshold = 5, return = "data_summary")
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{A Standard Person Query dataset in the form of a data frame.}
|
||||
|
||||
\item{collab_threshold}{The collaboration hours threshold that should be exceeded as an average for the entire analysis period for the employee to be categorized as a knowledge worker ("kw").
|
||||
Enter a positive number. Default is set to 5 collaboration hours.}
|
||||
\item{collab_threshold}{The collaboration hours threshold that should be
|
||||
exceeded as an average for the entire analysis period for the employee to
|
||||
be categorized as a knowledge worker ("kw"). Enter a positive number.
|
||||
Default is set to 5 collaboration hours.}
|
||||
|
||||
\item{return}{String to specify what to return}
|
||||
\item{return}{String specifying what to return. This must be one of the
|
||||
following strings:
|
||||
\itemize{
|
||||
\item \code{"text"}
|
||||
\item \code{"data_with_flag"}
|
||||
\item \code{"data_clean"}
|
||||
\item \code{"data_summary"}
|
||||
}
|
||||
|
||||
See \code{Value} for more information.}
|
||||
}
|
||||
\value{
|
||||
Returns an error message by default, where 'text' is passed in \code{return}.
|
||||
When 'data_with_flag' is passed, a copy of your original dataframe with an additional column containing the kw/nkw flag will be returned.
|
||||
When 'data_clean' is passed, a full dataframe excluding "nkw" employees will be returned.
|
||||
when 'data_summmary' is passed, a summary table by organization listing the number and \% of non-knowledge workers will be returned.
|
||||
A different output is returned depending on the value passed to the \code{return}
|
||||
argument:
|
||||
\itemize{
|
||||
\item \code{"text"}: string. Returns a diagnostic message.
|
||||
\item \code{"data_with_flag"}: data frame. Original input data with an additional
|
||||
column containing the \code{kw}/\code{nkw} flag.
|
||||
\item \code{"data_clean"}: data frame. Data frame with non-knowledge workers
|
||||
excluded.
|
||||
\item \code{"data_summary"}: data frame. A summary table by organization listing
|
||||
the number and \% of non-knowledge workers.
|
||||
}
|
||||
}
|
||||
\description{
|
||||
This function scans a standard query output to identify employees with consistently low collaboration signals.
|
||||
Returns the \% of non-knowledge workers identified by Organization, and optionally an edited dataframe with non-knowledge workers removed, or the full dataframe with the kw/nkw flag added.
|
||||
This function scans a standard query output to identify employees with
|
||||
consistently low collaboration signals. Returns the \% of non-knowledge
|
||||
workers identified by Organization, and optionally an edited dataframe with
|
||||
non-knowledge workers removed, or the full dataframe with the kw/nkw flag
|
||||
added.
|
||||
}
|
||||
\seealso{
|
||||
Other Data Validation:
|
||||
|
@ -35,11 +57,14 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -42,11 +42,14 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
@ -54,4 +57,3 @@ Other Data Validation:
|
|||
\code{\link{track_HR_change}()}
|
||||
}
|
||||
\concept{Data Validation}
|
||||
\concept{General}
|
||||
|
|
|
@ -17,19 +17,42 @@ identify_privacythreshold(
|
|||
\item{hrvar}{A list of HR Variables to consider in the scan.
|
||||
Defaults to all HR attributes identified.}
|
||||
|
||||
\item{mingroup}{Numeric value setting the privacy threshold / minimum group size.
|
||||
Defaults to 5.}
|
||||
\item{mingroup}{Numeric value setting the privacy threshold / minimum group
|
||||
size. Defaults to 5.}
|
||||
|
||||
\item{return}{A character vector specifying what to return.
|
||||
Valid values include "table" (default) and "text" (text)}
|
||||
\item{return}{String specifying what to return. This must be one of the
|
||||
following strings:
|
||||
\itemize{
|
||||
\item \code{"table"}
|
||||
\item \code{"text"}
|
||||
}
|
||||
|
||||
See \code{Value} for more information.}
|
||||
}
|
||||
\value{
|
||||
A different output is returned depending on the value passed to the \code{return}
|
||||
argument:
|
||||
\itemize{
|
||||
\item \code{"table"}: data frame. A summary table of groups that fall below the
|
||||
privacy threshold.
|
||||
\item \code{"text"}: string. A diagnostic message.
|
||||
}
|
||||
|
||||
Returns a ggplot object by default, where 'plot' is passed in \code{return}.
|
||||
When 'table' is passed, a summary table is returned as a data frame.
|
||||
}
|
||||
\description{
|
||||
This function scans a standard query output for groups with of employees under the privacy threshold.
|
||||
The method consists in reviewing each individual HR attribute, and count the distinct people within each group.
|
||||
This function scans a standard query output for groups with of employees
|
||||
under the privacy threshold. The method consists in reviewing each individual
|
||||
HR attribute, and count the distinct people within each group.
|
||||
}
|
||||
\examples{
|
||||
# Return a summary table
|
||||
dv_data \%>\% identify_privacythreshold(return = "table")
|
||||
|
||||
# Return a diagnostic message
|
||||
dv_data \%>\% identify_privacythreshold(return = "text")
|
||||
|
||||
}
|
||||
\seealso{
|
||||
Other Data Validation:
|
||||
|
@ -42,11 +65,14 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -11,8 +11,11 @@ identify_query(data, threshold = 2)
|
|||
If the data is not identified as a Workplace Analytics dataset, the function
|
||||
will return an error.}
|
||||
|
||||
\item{threshold}{Debugging use only. Increase to raise the 'strictness' of the
|
||||
guessing algorithm. Defaults to 2.}
|
||||
\item{threshold}{Debugging use only. Increase to raise the 'strictness' of
|
||||
the guessing algorithm. Defaults to 2.}
|
||||
}
|
||||
\value{
|
||||
String. A diagnostic message is returned.
|
||||
}
|
||||
\description{
|
||||
Pass a Workplace Analytics dataset and return the identified
|
||||
|
@ -39,11 +42,14 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
|
|
|
@ -26,10 +26,7 @@ argument:
|
|||
\itemize{
|
||||
\item \code{"plot"}: ggplot object. A bar plot for the weekly count of shifts.
|
||||
\item \code{"table"}: data frame. A summary table for the count of shifts.
|
||||
\item \verb{"data}: data frame. Input data appended with the following columns:
|
||||
\itemize{
|
||||
\item \code{Shifts}
|
||||
}
|
||||
\item \verb{"data}: data frame. Input data appended with the \code{Shifts} columns.
|
||||
}
|
||||
}
|
||||
\description{
|
||||
|
@ -45,3 +42,40 @@ dv_data \%>\% identify_shifts()
|
|||
dv_data \%>\% identify_shifts(return = "table")
|
||||
|
||||
}
|
||||
\seealso{
|
||||
Other Data Validation:
|
||||
\code{\link{check_query}()},
|
||||
\code{\link{extract_hr}()},
|
||||
\code{\link{flag_ch_ratio}()},
|
||||
\code{\link{flag_em_ratio}()},
|
||||
\code{\link{flag_extreme}()},
|
||||
\code{\link{flag_outlooktime}()},
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
\code{\link{subject_validate}()},
|
||||
\code{\link{track_HR_change}()}
|
||||
|
||||
Other Working Patterns:
|
||||
\code{\link{flex_index}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{plot_flex_index}()},
|
||||
\code{\link{workpatterns_area}()},
|
||||
\code{\link{workpatterns_classify_bw}()},
|
||||
\code{\link{workpatterns_classify_pav}()},
|
||||
\code{\link{workpatterns_classify}()},
|
||||
\code{\link{workpatterns_hclust}()}
|
||||
}
|
||||
\concept{Data Validation}
|
||||
\concept{Working Patterns}
|
||||
|
|
|
@ -76,8 +76,33 @@ em_data \%>\% identify_shifts_wp(return = "table")
|
|||
|
||||
}
|
||||
\seealso{
|
||||
Other Data Validation:
|
||||
\code{\link{check_query}()},
|
||||
\code{\link{extract_hr}()},
|
||||
\code{\link{flag_ch_ratio}()},
|
||||
\code{\link{flag_em_ratio}()},
|
||||
\code{\link{flag_extreme}()},
|
||||
\code{\link{flag_outlooktime}()},
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{identify_tenure}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
\code{\link{subject_validate}()},
|
||||
\code{\link{track_HR_change}()}
|
||||
|
||||
Other Working Patterns:
|
||||
\code{\link{flex_index}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{plot_flex_index}()},
|
||||
\code{\link{workpatterns_area}()},
|
||||
\code{\link{workpatterns_classify_bw}()},
|
||||
|
@ -85,4 +110,5 @@ Other Working Patterns:
|
|||
\code{\link{workpatterns_classify}()},
|
||||
\code{\link{workpatterns_hclust}()}
|
||||
}
|
||||
\concept{Data Validation}
|
||||
\concept{Working Patterns}
|
||||
|
|
|
@ -2,7 +2,8 @@
|
|||
% Please edit documentation in R/identify_tenure.R
|
||||
\name{identify_tenure}
|
||||
\alias{identify_tenure}
|
||||
\title{Tenure calculation based on different input dates, returns data summary table or histogram}
|
||||
\title{Tenure calculation based on different input dates, returns data
|
||||
summary table or histogram}
|
||||
\usage{
|
||||
identify_tenure(
|
||||
data,
|
||||
|
@ -15,9 +16,11 @@ identify_tenure(
|
|||
\arguments{
|
||||
\item{data}{A Standard Person Query dataset in the form of a data frame.}
|
||||
|
||||
\item{end_date}{A string specifying the name of the date variable representing the latest date. Defaults to "Date".}
|
||||
\item{end_date}{A string specifying the name of the date variable
|
||||
representing the latest date. Defaults to "Date".}
|
||||
|
||||
\item{beg_date}{A string specifying the name of the date variable representing the hire date. Defaults to "HireDate".}
|
||||
\item{beg_date}{A string specifying the name of the date variable
|
||||
representing the hire date. Defaults to "HireDate".}
|
||||
|
||||
\item{maxten}{A numeric value representing the maximum tenure.
|
||||
If the tenure exceeds this threshold, it would be accounted for in the flag message.}
|
||||
|
@ -53,12 +56,15 @@ Other Data Validation:
|
|||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count_all}()},
|
||||
\code{\link{hrvar_count}()},
|
||||
\code{\link{identify_churn}()},
|
||||
\code{\link{identify_holidayweeks}()},
|
||||
\code{\link{identify_inactiveweeks}()},
|
||||
\code{\link{identify_nkw}()},
|
||||
\code{\link{identify_outlier}()},
|
||||
\code{\link{identify_privacythreshold}()},
|
||||
\code{\link{identify_query}()},
|
||||
\code{\link{identify_shifts_wp}()},
|
||||
\code{\link{identify_shifts}()},
|
||||
\code{\link{remove_outliers}()},
|
||||
\code{\link{subject_validate_report}()},
|
||||
\code{\link{subject_validate}()},
|
||||
|
|
|
@ -18,7 +18,7 @@ file will be saved in the same directory with a different file extension.}
|
|||
\description{
|
||||
Uses \code{import_wpa()} to read a Workplace Analytics query in CSV
|
||||
and convert this into the serialized FST format which is much faster to
|
||||
read. The 'fst' package must be installed.
|
||||
read. The 'fst' package must be installed, or an error message is returned.
|
||||
}
|
||||
\details{
|
||||
The \href{https://www.fstpackage.org/}{fst} package provides a way to serialize
|
||||
|
@ -35,3 +35,11 @@ at the start of your analysis script.
|
|||
Internally, \code{import_to_fst()} uses \code{import_wpa()}, and additional arguments
|
||||
to \code{import_wpa()} can be passed with \code{...}.
|
||||
}
|
||||
\seealso{
|
||||
Other Import and Export:
|
||||
\code{\link{copy_df}()},
|
||||
\code{\link{create_dt}()},
|
||||
\code{\link{export}()},
|
||||
\code{\link{import_wpa}()}
|
||||
}
|
||||
\concept{Import and Export}
|
||||
|
|
|
@ -25,11 +25,19 @@ information. Defaults to \code{'UTF-8'}.}
|
|||
A \code{tibble} is returned.
|
||||
}
|
||||
\description{
|
||||
Import a Workplace Analytics Query from a local CSV File, with variable classifications optimised
|
||||
for other 'wpa' functions.
|
||||
Import a Workplace Analytics Query from a local CSV File, with variable
|
||||
classifications optimised for other 'wpa' functions.
|
||||
}
|
||||
\details{
|
||||
\code{import_wpa()} uses \code{data.table::fread()} to import CSV files for speed,
|
||||
and by default \code{stringsAsFactors} is set to FALSE.
|
||||
A data frame is returned by the function (not a \code{data.table}).
|
||||
}
|
||||
\seealso{
|
||||
Other Import and Export:
|
||||
\code{\link{copy_df}()},
|
||||
\code{\link{create_dt}()},
|
||||
\code{\link{export}()},
|
||||
\code{\link{import_to_fst}()}
|
||||
}
|
||||
\concept{Import and Export}
|
||||
|
|
|
@ -28,13 +28,69 @@ following strings: - \code{"plot"} - \code{"table"}}
|
|||
of the bubbles}
|
||||
}
|
||||
\description{
|
||||
Plot the internal network metrics for a HR variable as a scatter plot, showing
|
||||
Internal Network Breadth as the vertical axis and Internal Network Size as the
|
||||
horizontal axis.
|
||||
Plot the internal network metrics for a HR variable as a scatter plot,
|
||||
showing Internal Network Breadth as the vertical axis and Internal Network
|
||||
Size as the horizontal axis.
|
||||
}
|
||||
\details{
|
||||
Uses the metrics \code{Internal_network_size} and
|
||||
\code{Networking_outside_organization}.
|
||||
}
|
||||
\examples{
|
||||
# Return plot
|
||||
sq_data \%>\% internal_network_plot(return = "plot")
|
||||
|
||||
# Return summary table
|
||||
sq_data \%>\% internal_network_plot(return = "table")
|
||||
|
||||
}
|
||||
\concept{Connectivity}
|
||||
\seealso{
|
||||
Other Visualization:
|
||||
\code{\link{afterhours_dist}()},
|
||||
\code{\link{afterhours_fizz}()},
|
||||
\code{\link{afterhours_line}()},
|
||||
\code{\link{afterhours_rank}()},
|
||||
\code{\link{afterhours_summary}()},
|
||||
\code{\link{afterhours_trend}()},
|
||||
\code{\link{collaboration_area}()},
|
||||
\code{\link{collaboration_dist}()},
|
||||
\code{\link{collaboration_fizz}()},
|
||||
\code{\link{collaboration_line}()},
|
||||
\code{\link{collaboration_rank}()},
|
||||
\code{\link{collaboration_sum}()},
|
||||
\code{\link{collaboration_trend}()},
|
||||
\code{\link{create_bar_asis}()},
|
||||
\code{\link{create_bar}()},
|
||||
\code{\link{create_boxplot}()},
|
||||
\code{\link{create_bubble}()},
|
||||
\code{\link{create_dist}()},
|
||||
\code{\link{create_fizz}()},
|
||||
\code{\link{create_line_asis}()},
|
||||
\code{\link{create_line}()},
|
||||
\code{\link{create_period_scatter}()},
|
||||
\code{\link{create_rank}()},
|
||||
\code{\link{create_sankey}()},
|
||||
\code{\link{create_scatter}()},
|
||||
\code{\link{create_stacked}()},
|
||||
\code{\link{create_trend}()},
|
||||
\code{\link{email_dist}()},
|
||||
\code{\link{email_fizz}()},
|
||||
\code{\link{email_line}()},
|
||||
\code{\link{email_rank}()},
|
||||
\code{\link{email_summary}()},
|
||||
\code{\link{email_trend}()},
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{hr_trend}()},
|
||||
\code{\link{hrvar_count}()}
|
||||
|
||||
Other Network:
|
||||
\code{\link{external_network_plot}()},
|
||||
\code{\link{g2g_data}},
|
||||
\code{\link{network_g2g}()},
|
||||
\code{\link{network_leiden}()},
|
||||
\code{\link{network_louvain}()},
|
||||
\code{\link{network_p2p}()},
|
||||
\code{\link{p2p_data_sim}()}
|
||||
}
|
||||
\concept{Network}
|
||||
\concept{Visualization}
|
||||
|
|
Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше
Загрузка…
Ссылка в новой задаче