зеркало из https://github.com/microsoft/wpa.git
feat: update analyst guide
This commit is contained in:
Родитель
b18b4fd950
Коммит
32eb1a1f6b
|
@ -1,3 +1,42 @@
|
|||
# Distribution
|
||||
|
||||
_Coming soon..._
|
||||
**Distribution** functions allow you to go beyond aggregated averages, and diagnose whether metrics are skewed, evenly distributed, or contain outliers.
|
||||
|
||||
You can use the `fizz` and `dist` family of functions for this. For email hours, you can run the following:
|
||||
|
||||
```R
|
||||
sq_data %>% email_dist() # 100% horizontal stacked bar
|
||||
```
|
||||
|
||||
<img src="https://raw.githubusercontent.com/microsoft/wpa/main/.github/gallery/email_dist.png" align ="center" width=80%>
|
||||
|
||||
You can also return a jittered scatter plot ('fizzy drink plot').
|
||||
|
||||
```R
|
||||
sq_data %>% email_fizz() # Fizzy drink plot
|
||||
```
|
||||
|
||||
## Functions
|
||||
|
||||
Other examples of distribution functions include:
|
||||
|
||||
### Dist
|
||||
|
||||
- `collaboration_dist()`
|
||||
- `meeting_dist()`
|
||||
- `one2one_dist()`
|
||||
- `afterhours_dist()`
|
||||
- `workloads_dist()`
|
||||
|
||||
### Fizz
|
||||
|
||||
- `collaboration_fizz()`
|
||||
- `meeting_fizz()`
|
||||
- `one2one_fizz()`
|
||||
- `afterhours_fizz()`
|
||||
- `workloads_fizz()`
|
||||
|
||||
### Flexible functions
|
||||
- `create_dist()`
|
||||
- `create_fizz()`
|
||||
- `create_boxplot()`
|
|
@ -8,12 +8,30 @@ An instance of a summary function in action would be:
|
|||
sq_data %>% collaboration_summary()
|
||||
```
|
||||
|
||||
<img src="https://raw.githubusercontent.com/microsoft/wpa/main/.github/gallery/collab_sum.png" align ="center" width=80%>
|
||||
|
||||
This returns a plot that you can either as a SVG (vector) or PNG (scalar) image by passing the output to `export()`. Since the plot output is a ggplot object, you can also make further customizations to it by appending ggplot layers, for instance:
|
||||
|
||||
```R
|
||||
sq_data %>%
|
||||
collaboration_summary() +
|
||||
ggtitle("This is a custom title")
|
||||
```
|
||||
|
||||
You can use return a summary table rather than a plot:
|
||||
|
||||
```R
|
||||
sq_data %>% collaboration_summary(return = "table")
|
||||
```
|
||||
|
||||
To export the results to a clipboard, you can pass the outputs to `export()` again:
|
||||
|
||||
```R
|
||||
sq_data %>%
|
||||
collaboration_summary(return = "table") %>%
|
||||
export()
|
||||
```
|
||||
|
||||
There is also an option to change the threshold for excluding group size:
|
||||
|
||||
```
|
||||
|
@ -23,8 +41,6 @@ sq_data %>%
|
|||
return = "table")
|
||||
```
|
||||
|
||||
|
||||
|
||||
Other similar functions include:
|
||||
|
||||
- `email_summary()`
|
||||
|
@ -32,3 +48,6 @@ Other similar functions include:
|
|||
- `one2one_summary()`
|
||||
- `workloads_summary()`
|
||||
- `afterhours_summary()`
|
||||
|
||||
See `create_bar()` for creating summary functions with other Workplace Analytics metrics.
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче