This commit is contained in:
Martin Chan 2021-03-04 22:19:07 +00:00
Родитель 53139a61ac
Коммит 59475b85b5
99 изменённых файлов: 718 добавлений и 275 удалений

Просмотреть файл

@ -6,9 +6,12 @@
#' @title Plot External Network Breadth and Size as a scatter plot
#'
#' @description
#' Plot the external network metrics for a HR variable as a scatter plot, showing
#' External Network Breadth as the vertical axis and External Network Size as the
#' horizontal axis.
#' Plot the external network metrics for a HR variable as a scatter plot,
#' showing 'External Network Breadth' as the vertical axis and 'External Network
#' Size' as the horizontal axis.
#'
#' @details
#' Uses the metrics `External_network_size` and `Networking_outside_company`.
#'
#' @inheritParams create_bubble
#'
@ -16,7 +19,8 @@
#' # Return plot
#' sq_data %>% external_network_plot(return = "plot")
#'
#' @family Connectivity
#' @family Visualization
#' @family Network
#'
#' @export

Просмотреть файл

@ -31,7 +31,8 @@
#' - `"vars"`: data frame containing all the columns of HR variables present
#' in the data.
#'
#' @family General
#' @family Support
#' @family Data Validation
#'
#' @examples
#' sq_data %>% extract_hr(return = "names")

Просмотреть файл

@ -3,7 +3,8 @@
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
#' @title Flag unusual high collaboration hours to after-hours collaboration hours ratio
#' @title Flag unusual high collaboration hours to after-hours collaboration
#' hours ratio
#'
#' @description This function flags persons who have an unusual ratio
#' of collaboration hours to after-hours collaboration hours.
@ -20,10 +21,12 @@
#' - `"data"`
#'
#' @return
#' A different output is returned depending on the value passed to the `return` argument:
#' A different output is returned depending on the value passed to the `return`
#' argument:
#' - `"message"`: message in the console containing diagnotic summary
#' - `"text"`: string containing diagnotic summary
#' - `"data"`: data frame. Person-level data with flags on unusually high or low ratios
#' - `"data"`: data frame. Person-level data with flags on unusually high or
#' low ratios
#'
#' @family Data Validation
#'

Просмотреть файл

@ -15,9 +15,22 @@
#' @family Data Validation
#'
#' @param data A data frame containing a Person Query.
#' @param threshold Numeric value specifying the threshold for flagging. Defaults to 1.
#' @param return Character vector specifying what to return. Defaults to "text", with
#' valid options to return a data frame ("data").
#' @param threshold Numeric value specifying the threshold for flagging.
#' Defaults to 1.
#'
#' @param return String specifying what to return. This must be one of the
#' following strings:
#' - `"text"`
#' - `"data"`
#'
#' See `Value` for more information.
#'
#' @return
#' A different output is returned depending on the value passed to the `return`
#' argument:
#' - `"text"`: string. A diagnostic message.
#' - `"data"`: data frame. Person-level data with those flagged with unusual
#' ratios.
#'
#' @examples
#' flag_em_ratio(sq_data)

Просмотреть файл

@ -11,10 +11,24 @@
#'
#' @param data A Standard Person Query dataset in the form of a data frame.
#' @param metric A character string specifying the metric to test.
#' @param person A logical value to specify whether to calculate person-averages.
#' Defaults to TRUE (person-averages calculated).
#' @param person A logical value to specify whether to calculate
#' person-averages. Defaults to `TRUE` (person-averages calculated).
#' @param threshold Numeric value specifying the threshold for flagging.
#' @param return A character string specifying what to return.
#' @param return String specifying what to return. This must be one of the
#' following strings:
#' - `"text"`
#' - `"message"`
#' - `"table"`
#'
#' See `Value` for more information.
#'
#' @return
#' A different output is returned depending on the value passed to the `return`
#' argument:
#' - `"text"`: string. A diagnostic message.
#' - `"message"`: message on console. A diagnostic message.
#' - `"table"`: data frame. A person-level table with `PersonId` and the
#' extreme values of the selected metric.
#'
#' @family Data Validation
#'
@ -86,10 +100,16 @@ flag_extreme <- function(data,
}
if(return == "text"){
FlagMessage
} else if(return == "message"){
message(FlagMessage)
} else if(return == "table"){
extreme_df
}
}

Просмотреть файл

@ -11,10 +11,22 @@
#' @import dplyr
#'
#' @param data A data frame containing a Person Query.
#' @param threshold A numeric vector of length two, specifying the hour threshold for flagging.
#' Defaults to c(4, 15).
#' @param return String to specify what to return.
#' Valid options include "text" (default), "message", and "data".
#' @param threshold A numeric vector of length two, specifying the hour
#' threshold for flagging. Defaults to c(4, 15).
#' @param return String specifying what to return. This must be one of the
#' following strings:
#' - `"text"` (default)
#' - `"message"`
#' - `"data"`
#'
#' @return
#' A different output is returned depending on the value passed to the `return`
#' argument:
#' - `"text"`: string. A diagnostic message.
#' - `"message"`: message on console. A diagnostic message.
#' - `"data"`: data frame. Data where flag is present.
#'
#' See `Value` for more information.
#'
#' @family Data Validation
#'
@ -24,10 +36,17 @@
#'
#' # Example where Outlook Start and End times are imputed
#' spq_df <- sq_data
#'
#' spq_df$WorkingStartTimeSetInOutlook <- "6:30"
#'
#' spq_df$WorkingEndTimeSetInOutlook <- "23:30"
#'
#' # Return a message
#' flag_outlooktime(spq_df, threshold = c(5, 13))
#'
#' # Return data
#' flag_outlooktime(spq_df, threshold = c(5, 13), return = "data")
#'
#' @export
flag_outlooktime <- function(data, threshold = c(4, 15), return = "message"){
@ -133,13 +152,21 @@ flag_outlooktime <- function(data, threshold = c(4, 15), return = "message"){
## Print diagnosis
## Should implement options to return the PersonIds or a full data frame
if(return == "text"){
FlagMessage
} else if(return == "message"){
message(FlagMessage)
} else if(return == "data"){
flagged_data[flagged_data$WorkdayFlag == TRUE,]
} else {
stop("Error: please check inputs for `return`")
}
}

Просмотреть файл

@ -80,7 +80,8 @@
#' - `"plot"`: ggplot object. A random of ten working patterns are displayed,
#' with diagnostic data and the Flexibility Index shown on the plot.
#' - `"data"`: data frame. The original input data appended with the
#' Flexibility Index and the component scores.
#' Flexibility Index and the component scores. Can be used with
#' `plot_flex_index()` to recreate visuals found in `flex_index()`.
#' - `"table"`: data frame. A summary table for the metric.
#'
#' @import dplyr
@ -108,10 +109,9 @@
#' # Return the raw data with the computed Flexibility Index
#' em_data %>%
#' flex_index(return = "data")
#'
#'
#' }
#' @family Work Patterns
#'
#' @family Working Patterns
#'
#' @export
flex_index <- function(data,

Просмотреть файл

@ -8,6 +8,9 @@
#' @description
#' A demo dataset generated from a Group-to-Group Query from Workplace Analytics.
#'
#' @family Data
#' @family Network
#'
#' @format A data frame with 3517 rows and 7 variables:
#' \describe{
#' \item{TimeInvestors_Organization}{ }

Просмотреть файл

@ -12,14 +12,20 @@
#' @param title Character string to specify the title of the chunk.
#' @param filename File name to be used in the exported HTML.
#' @param outputs A list of outputs to be added to the HTML report.
#' Note that `outputs`, `titles`, `echos`, and `levels` must have the same length
#' @param titles A list/vector of character strings to specify the title of the chunks.
#' @param subheaders A list/vector of character strings to specify the subheaders for each chunk.
#' @param echos A list/vector of logical values to specify whether to display code.
#' @param levels A list/vector of numeric value to specify the header level of the chunk.
#' Note that `outputs`, `titles`, `echos`, and `levels` must have the same
#' length
#' @param titles A list/vector of character strings to specify the title of the
#' chunks.
#' @param subheaders A list/vector of character strings to specify the
#' subheaders for each chunk.
#' @param echos A list/vector of logical values to specify whether to display
#' code.
#' @param levels A list/vector of numeric value to specify the header level of
#' the chunk.
#' @param theme Character vector to specify theme to be used for the report.
#' E.g. "united", "default".
#' @param preamble A preamble to appear at the beginning of the report, passed as a text string.
#' E.g. `"united"`, `"default"`.
#' @param preamble A preamble to appear at the beginning of the report, passed
#' as a text string.
#'
#' @importFrom purrr pmap
#' @importFrom purrr reduce
@ -32,6 +38,7 @@
#'
#' The first step is to define the content that will go into a report and assign
#' the outputs to a list.
#'
#' ```
#' # Step 1: Define Content
#' output_list <-
@ -39,7 +46,9 @@
#' sq_data %>% workloads_summary(return = "table")) %>%
#' purrr::map_if(is.data.frame, create_dt)
#' ```
#'
#' The next step is to add a list of titles for each of the objects on the list:
#'
#' ```
#' # Step 2: Add Corresponding Titles
#' title_list <- c("Workloads Summary - Plot", "Workloads Summary - Table")

Просмотреть файл

@ -37,7 +37,7 @@
#'
#' @importFrom data.table ":=" "%like%" "%between%"
#'
#' @family Work Patterns
#' @family Working Patterns
#'
#' @examples
#' # Return plot

Просмотреть файл

@ -39,6 +39,8 @@
#' @import ggplot2
#' @import dplyr
#'
#' @family Network
#'
#' @examples
#' # Return a network plot
#' g2g_data %>% network_g2g()

Просмотреть файл

@ -3,26 +3,39 @@
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
#' @title Implement the Leiden community detection on a Person to Person network query
#' @title Implement the Leiden community detection on a Person to Person network
#' query
#'
#' @description
#' `r lifecycle::badge('experimental')`
#' Take a P2P network query and implement the Leiden community detection method. To run
#' this function, you will require all the pre-requisites of the **leiden** package installed,
#' which includes Python and **reticulate**.
#'
#' Take a P2P network query and implement the Leiden community detection method.
#' To run this function, you will require all the pre-requisites of the
#' 'leiden' package installed, which includes Python and 'reticulate'.
#'
#' @inheritParams network_p2p
#'
#' @param return
#' String specifying what output to return. Defaults to "plot-leiden". Valid return options include:
#' - 'plot-leiden': return a network plot coloured by leiden communities, saving a PDF to path.
#' - 'plot-hrvar': return a network plot coloured by HR attribute, saving a PDF to path.
#' - 'plot-sankey': return a sankey plot combining communities and HR attribute.
#' - 'table': return a vertex summary table with counts in communities and HR attribute.
#' - 'data': return a vertex data file that matches vertices with communities and HR attributes.
#' - 'describe': return a list of data frames which describe each of the identified communities.
#' The first data frame is a summary table of all the communities.
#' - 'network': return igraph object.
#' String specifying what output to return. Defaults to "plot-leiden". Valid
#' return options include:
#' - `'plot-leiden'`: return a network plot coloured by leiden communities,
#' saving a PDF to path.
#' - `'plot-hrvar'`: return a network plot coloured by HR attribute, saving a
#' PDF to path.
#' - `'plot-sankey'`: return a sankey plot combining communities and HR
#' attribute.
#' - `'table'`: return a vertex summary table with counts in communities and
#' HR attribute.
#' - `'data'`: return a vertex data file that matches vertices with
#' communities and HR attributes.
#' - `'describe'`: return a list of data frames which describe each of the
#' identified communities. The first data frame is a summary table of all the
#' communities.
#' - `'network'`: return igraph object.
#'
#' @return See `return`.
#'
#' @family Network
#'
#' @examples
#' \donttest{

Просмотреть файл

@ -3,25 +3,38 @@
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
#' @title Implement the Louvain community detection on a Person to Person network query
#' @title Implement the Louvain community detection on a Person to Person
#' network query
#'
#' @description
#' `r lifecycle::badge('experimental')`
#' Take a P2P network query and implement the Louvain community detection method. The
#' **igraph** implementation of the Louvain method is used.
#'
#' Take a P2P network query and implement the Louvain community detection
#' method. The 'igraph' implementation of the Louvain method is used.
#'
#' @inheritParams network_p2p
#'
#' @param return
#' String specifying what output to return. Defaults to "plot-louvain". Valid return options include:
#' - 'plot-louvain': return a network plot coloured by Louvain communities, saving a PDF to path.
#' - 'plot-hrvar': return a network plot coloured by HR attribute, saving a PDF to path.
#' - 'plot-sankey': return a sankey plot combining communities and HR attribute.
#' - 'table': return a vertex summary table with counts in communities and HR attribute.
#' - 'data': return a vertex data file that matches vertices with communities and HR attributes.
#' - 'describe': return a list of data frames which describe each of the identified communities.
#' The first data frame is a summary table of all the communities.
#' - 'network': return igraph object.
#' String specifying what output to return. Defaults to "plot-louvain". Valid
#' return options include:
#' - `'plot-louvain'`: return a network plot coloured by Louvain communities,
#' saving a PDF to path.
#' - `'plot-hrvar'`: return a network plot coloured by HR attribute, saving a
#' PDF to path.
#' - `'plot-sankey'`: return a sankey plot combining communities and HR
#' attribute.
#' - `'table'`: return a vertex summary table with counts in communities and
#' HR attribute.
#' - `'data'`: return a vertex data file that matches vertices with
#' communities and HR attributes.
#' - `'describe'`: return a list of data frames which describe each of the
#' identified communities. The first data frame is a summary table of all the
#' communities.
#' - `'network'`: return igraph object.
#'
#' @return See `return`.
#'
#' @family Network
#'
#' @examples
#' # Simulate a small person-to-person dataset
@ -40,7 +53,9 @@ network_louvain <- function(data,
node_alpha = 0.8,
algorithm = "mds",
path = "network_p2p_louvain",
desc_hrvar = c("Organization", "LevelDesignation", "FunctionType"),
desc_hrvar = c("Organization",
"LevelDesignation",
"FunctionType"),
return = "plot-louvain",
size_threshold = 5000){

Просмотреть файл

@ -8,50 +8,67 @@
#' @description
#' `r lifecycle::badge('experimental')`
#'
#' Pass a data frame containing a person-to-person query and return a network visualization.
#' Options are available for community detection using either the Louvain or the Leiden algorithms.
#' Pass a data frame containing a person-to-person query and return a network
#' visualization. Options are available for community detection using either the
#' Louvain or the Leiden algorithms.
#'
#'
#' @param data Data frame containing a person-to-person query.
#' @param hrvar String containing the label for the HR attribute.
#' @param display String determining what output to return. Valid values include:
#' - `"hrvar"` (default): compute analysis or visuals without computing communities.
#' - `"louvain"`: compute analysis or visuals with community detection, using the Louvain
#' algorithm.
#' - `"leiden"`: compute analysis or visuals with community detection, using the Leiden algorithm.
#' This requires all the pre-requisites of the **leiden** package installed,
#' which includes Python and **reticulate**.
#' @param display String determining what output to return. Valid values
#' include:
#' - `"hrvar"` (default): compute analysis or visuals without computing
#' communities.
#' - `"louvain"`: compute analysis or visuals with community detection, using
#' the Louvain algorithm.
#' - `"leiden"`: compute analysis or visuals with community detection, using
#' the Leiden algorithm. This requires all the pre-requisites of the
#' **leiden** package installed, which includes Python and **reticulate**.
#'
#' @param return String specifying what output to return. Defaults to "plot".
#' Valid return options include:
#' - `'plot'`: return a network plot.
#' - `'sankey'`: return a sankey plot combining communities and HR attribute. This is only valid if
#' a community detection method is selected at `display`.
#' - `'table'`: return a vertex summary table with counts in communities and HR attribute.
#' - `'data'`: return a vertex data file that matches vertices with communities and HR attributes.
#' - `'describe'`: return a list of data frames which describe each of the identified communities.
#' The first data frame is a summary table of all the communities. This is only valid if a community
#' detection method is selected at `display`.
#' - `'sankey'`: return a sankey plot combining communities and HR attribute.
#' This is only valid if a community detection method is selected at
#' `display`.
#' - `'table'`: return a vertex summary table with counts in communities and
#' HR attribute.
#' - `'data'`: return a vertex data file that matches vertices with
#' communities and HR attributes.
#' - `'describe'`: return a list of data frames which describe each of the
#' identified communities. The first data frame is a summary table of all the
#' communities. This is only valid if a community detection method is selected
#' at `display`.
#' - `'network'`: return igraph object.
#'
#' @param path File path for saving the PDF output. Defaults to a timestamped path based on current parameters.
#' @param desc_hrvar Character vector of length 3 containing the HR attributes to use when returning the
#' "describe" output. See `network_describe()`.
#' @param path File path for saving the PDF output. Defaults to a timestamped
#' path based on current parameters.
#' @param desc_hrvar Character vector of length 3 containing the HR attributes
#' to use when returning the `"describe"` output. See `network_describe()`.
#' @param bg_fill String to specify background fill colour.
#' @param font_col String to specify font and link colour.
#' @param legend_pos String to specify position of legend. Defaults to "bottom". See `ggplot2::theme()`.
#' @param palette Function for generating a colour palette with a single argument `n`. Uses "rainbow" by default.
#' @param node_alpha A numeric value between 0 and 1 to specify the transparency of the nodes.
#' @param res Resolution parameter to be passed to `leiden::leiden()`. Defaults to 0.5.
#' @param seed Seed for the random number generator passed to `leiden::leiden()` to ensure consistency. Only applicable
#' when `display` is set to "leiden".
#' @param algorithm String to specify the node placement algorithm to be used. Defaults to "fr" for the force-directed
#' algorithm of Fruchterman and Reingold. See <https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html> for a
#' full list of options.
#' @param size_threshold Numeric value representing the maximum number of edges before `network_leiden()`
#' switches to use a more efficient, but less elegant plotting method (native igraph). Defaults to 5000.
#' Set as `0` to co-erce to a fast plotting method every time, and `Inf` to always use the default plotting
#' method.
#' @param legend_pos String to specify position of legend. Defaults to
#' `"bottom"`. See `ggplot2::theme()`.
#' @param palette Function for generating a colour palette with a single
#' argument `n`. Uses "rainbow" by default.
#' @param node_alpha A numeric value between 0 and 1 to specify the transparency
#' of the nodes.
#' @param res Resolution parameter to be passed to `leiden::leiden()`. Defaults
#' to 0.5.
#' @param seed Seed for the random number generator passed to `leiden::leiden()`
#' to ensure consistency. Only applicable when `display` is set to `"leiden"`.
#' @param algorithm String to specify the node placement algorithm to be used.
#' Defaults to `"fr"` for the force-directed algorithm of Fruchterman and
#' Reingold. See
#' <https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html> for a full
#' list of options.
#' @param size_threshold Numeric value representing the maximum number of edges
#' before `network_leiden()` switches to use a more efficient, but less
#' elegant plotting method (native igraph). Defaults to 5000. Set as `0` to
#' coerce to a fast plotting method every time, and `Inf` to always use the
#' default plotting method.
#'
#' @family Network
#'
#' @examples
#' # Simulate a small person-to-person dataset
@ -302,7 +319,7 @@ network_p2p <- function(data,
plot_output <-
g_layout +
ggraph::geom_edge_link(colour = "lightgrey", edge_width = 0.01, alpha = 0.15) +
ggraph::geom_edge_link(colour = "lightgrey", edge_width = 0.05, alpha = 0.15) +
ggraph::geom_node_point(aes(colour = !!sym(v_attr)),
alpha = node_alpha,
pch = 16) +

Просмотреть файл

@ -1,8 +1,9 @@
#' @title Simulate a person-to-person query using a Watts-Strogatz model
#'
#' @description Generate an person-to-person query / edgelist based on the graph
#' according to the Watts-Strogatz small-world network model. Organizational data
#' fields are also simulated for `Organization`, `LevelDesignation`, and `City`.
#' according to the Watts-Strogatz small-world network model. Organizational
#' data fields are also simulated for `Organization`, `LevelDesignation`, and
#' `City`.
#'
#' @param dim Integer constant, the dimension of the starting lattice.
#' @param size Integer constant, the size of the lattice along each dimension.
@ -11,14 +12,17 @@
#' @param p Real constant between zero and one, the rewiring probability.
#'
#' @details
#' This is a wrapper around `igraph::watts.strogatz.game()`. See igraph documentation
#' for details on methodology. Loop edges and multiple edges are disabled. Size of the
#' network can be changing the arguments `size` and `nei`.
#' This is a wrapper around `igraph::watts.strogatz.game()`. See igraph
#' documentation for details on methodology. Loop edges and multiple edges are
#' disabled. Size of the network can be changing the arguments `size` and `nei`.
#'
#' @examples
#' # Simulate a p2p dataset with 800 edges
#' p2p_data_sim(size = 200, nei = 4)
#'
#' @family Data
#' @family Network
#'
#' @export
p2p_data_sim <- function(dim = 1,
size = 300,

Просмотреть файл

@ -1,8 +1,8 @@
#' @title Plot a Sample of Working Patterns using Flexibility Index output
#'
#' @description This is a helper function for plotting visualizations for the Flexibility Index
#' using the `data` output from `flex_index()`. This is used within `flex_index()` itself
#' as an internal function.
#' @description This is a helper function for plotting visualizations for the
#' Flexibility Index using the `data` output from `flex_index()`. This is used
#' within `flex_index()` itself as an internal function.
#'
#' @param data Data frame. Direct data output from `flex_index()`.
#' @param sig_label Character string for identifying signal labels.
@ -17,27 +17,24 @@
#' @import ggplot2
#' @importFrom data.table ":=" "%like%" "%between%"
#'
#' @family Work Patterns
#' @family Working Patterns
#'
#' @examples
#' \donttest{
#' # Pre-calculate Flexibility Index
#' fi_output <- flex_index(em_data, return = "data")
#'
#'
#' # Examples of how to test the plotting options individually
#' # Sample of 10 work patterns
#' em_data %>%
#' flex_index(return = "data") %>%
#' plot_flex_index(method = "sample")
#' plot_flex_index(fi_output, method = "sample")
#'
#' # 10 most common work patterns
#' em_data %>%
#' flex_index(return = "data") %>%
#' plot_flex_index(method = "common")
#' plot_flex_index(fi_output, method = "common")
#'
#' # Plot Flexibility Index over time
#' em_data %>%
#' flex_index(return = "data") %>%
#' plot_flex_index(method = "time")
#' plot_flex_index(fi_output, method = "time")
#'
#' }
#' @return ggplot object. See `method`.
#'
#' @export
plot_flex_index <- function(data,

Просмотреть файл

@ -55,7 +55,7 @@
#' # Return summary table
#' workpatterns_area(em_data, return = "table")
#'
#' @family Work Patterns
#' @family Working Patterns
#'
#' @export
workpatterns_area <- function(data,

Просмотреть файл

@ -127,7 +127,7 @@
#'
#' }
#'
#' @family Work Patterns
#' @family Working Patterns
#'
#' @export
workpatterns_classify <- function(data,

Просмотреть файл

@ -48,7 +48,7 @@
#' }
#'
#'
#' @family Work Patterns
#' @family Working Patterns
#'
workpatterns_classify_bw <- function(data,
hrvar = NULL,

Просмотреть файл

@ -52,7 +52,7 @@
#' workpatterns_classify_pav(em_data, return = "plot-area")
#' }
#'
#' @family Work Patterns
#' @family Working Patterns
#'
workpatterns_classify_pav <- function(data,
values = "percent",

Просмотреть файл

@ -87,7 +87,7 @@
#'
#' }
#'
#' @family Work Patterns
#' @family Working Patterns
#'
#' @export
workpatterns_hclust <- function(data,

Просмотреть файл

@ -94,6 +94,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other After-hours Collaboration:

Просмотреть файл

@ -78,6 +78,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other After-hours Collaboration:

Просмотреть файл

@ -82,6 +82,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other After-hours Collaboration:

Просмотреть файл

@ -69,6 +69,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other After-hours Collaboration:

Просмотреть файл

@ -82,6 +82,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other After-hours Collaboration:

Просмотреть файл

@ -71,6 +71,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other After-hours Collaboration:

Просмотреть файл

@ -25,6 +25,7 @@ Other Support:
\code{\link{combine_signals}()},
\code{\link{cut_hour}()},
\code{\link{extract_date_range}()},
\code{\link{extract_hr}()},
\code{\link{rgb2hex}()}
}
\concept{Support}

Просмотреть файл

@ -44,6 +44,7 @@ Other Support:
\code{\link{combine_signals}()},
\code{\link{cut_hour}()},
\code{\link{extract_date_range}()},
\code{\link{extract_hr}()},
\code{\link{rgb2hex}()}
}
\concept{Support}

Просмотреть файл

@ -53,6 +53,7 @@ check_query(sq_data)
}
\seealso{
Other Data Validation:
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -91,6 +91,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Collaboration:

Просмотреть файл

@ -99,6 +99,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Collaboration:

Просмотреть файл

@ -81,6 +81,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Collaboration:

Просмотреть файл

@ -83,6 +83,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Collaboration:

Просмотреть файл

@ -77,6 +77,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Collaboration:

Просмотреть файл

@ -77,6 +77,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Collaboration:

Просмотреть файл

@ -68,6 +68,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Collaboration:

Просмотреть файл

@ -39,6 +39,7 @@ Other Support:
\code{\link{check_inputs}()},
\code{\link{cut_hour}()},
\code{\link{extract_date_range}()},
\code{\link{extract_hr}()},
\code{\link{rgb2hex}()}
}
\concept{Support}

Просмотреть файл

@ -102,6 +102,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -126,6 +126,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -102,6 +102,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -99,6 +99,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -99,6 +99,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -89,6 +89,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -93,6 +93,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -97,6 +97,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -107,6 +107,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -117,6 +117,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -74,6 +74,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -90,6 +90,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -103,6 +103,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -74,6 +74,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Flexible:

Просмотреть файл

@ -35,6 +35,7 @@ Other Support:
\code{\link{check_inputs}()},
\code{\link{combine_signals}()},
\code{\link{extract_date_range}()},
\code{\link{extract_hr}()},
\code{\link{rgb2hex}()}
}
\concept{Support}

Просмотреть файл

@ -91,7 +91,9 @@ A dataset generated from a Standard Person Query from Workplace Analytics.
}
\seealso{
Other Data:
\code{\link{em_data}}
\code{\link{em_data}},
\code{\link{g2g_data}},
\code{\link{p2p_data_sim}()}
}
\concept{Data}
\keyword{datasets}

Просмотреть файл

@ -80,7 +80,9 @@ columns for both IMs sent and Emails sent.
}
\seealso{
Other Data:
\code{\link{dv_data}}
\code{\link{dv_data}},
\code{\link{g2g_data}},
\code{\link{p2p_data_sim}()}
}
\concept{Data}
\keyword{datasets}

Просмотреть файл

@ -91,6 +91,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Emails:

Просмотреть файл

@ -76,6 +76,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Emails:

Просмотреть файл

@ -77,6 +77,7 @@ Other Visualization:
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Emails:

Просмотреть файл

@ -77,6 +77,7 @@ Other Visualization:
\code{\link{email_line}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Emails:

Просмотреть файл

@ -79,6 +79,7 @@ Other Visualization:
\code{\link{email_line}()},
\code{\link{email_rank}()},
\code{\link{email_trend}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Emails:

Просмотреть файл

@ -63,6 +63,7 @@ Other Visualization:
\code{\link{email_line}()},
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{external_network_plot}()},
\code{\link{hrvar_count}()}
Other Emails:

Просмотреть файл

@ -28,9 +28,12 @@ following strings: - \code{"plot"} - \code{"table"}}
of the bubbles}
}
\description{
Plot the external network metrics for a HR variable as a scatter plot, showing
External Network Breadth as the vertical axis and External Network Size as the
horizontal axis.
Plot the external network metrics for a HR variable as a scatter plot,
showing 'External Network Breadth' as the vertical axis and 'External Network
Size' as the horizontal axis.
}
\details{
Uses the metrics \code{External_network_size} and \code{Networking_outside_company}.
}
\examples{
# Return plot
@ -38,7 +41,49 @@ sq_data \%>\% external_network_plot(return = "plot")
}
\seealso{
Other Connectivity:
\code{\link{internal_network_plot}()}
Other Visualization:
\code{\link{afterhours_dist}()},
\code{\link{afterhours_fizz}()},
\code{\link{afterhours_line}()},
\code{\link{afterhours_rank}()},
\code{\link{afterhours_summary}()},
\code{\link{afterhours_trend}()},
\code{\link{collaboration_area}()},
\code{\link{collaboration_dist}()},
\code{\link{collaboration_fizz}()},
\code{\link{collaboration_line}()},
\code{\link{collaboration_rank}()},
\code{\link{collaboration_sum}()},
\code{\link{collaboration_trend}()},
\code{\link{create_bar_asis}()},
\code{\link{create_bar}()},
\code{\link{create_boxplot}()},
\code{\link{create_bubble}()},
\code{\link{create_dist}()},
\code{\link{create_fizz}()},
\code{\link{create_line_asis}()},
\code{\link{create_line}()},
\code{\link{create_period_scatter}()},
\code{\link{create_rank}()},
\code{\link{create_sankey}()},
\code{\link{create_scatter}()},
\code{\link{create_stacked}()},
\code{\link{create_trend}()},
\code{\link{email_dist}()},
\code{\link{email_fizz}()},
\code{\link{email_line}()},
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()},
\code{\link{hrvar_count}()}
Other Network:
\code{\link{g2g_data}},
\code{\link{network_g2g}()},
\code{\link{network_leiden}()},
\code{\link{network_louvain}()},
\code{\link{network_p2p}()},
\code{\link{p2p_data_sim}()}
}
\concept{Connectivity}
\concept{Network}
\concept{Visualization}

Просмотреть файл

@ -26,6 +26,7 @@ Other Support:
\code{\link{check_inputs}()},
\code{\link{combine_signals}()},
\code{\link{cut_hour}()},
\code{\link{extract_hr}()},
\code{\link{rgb2hex}()}
}
\concept{Support}

Просмотреть файл

@ -46,7 +46,34 @@ sq_data \%>\% extract_hr(return = "vars")
}
\seealso{
Other General:
\code{\link{identify_outlier}()}
Other Support:
\code{\link{camel_clean}()},
\code{\link{check_inputs}()},
\code{\link{combine_signals}()},
\code{\link{cut_hour}()},
\code{\link{extract_date_range}()},
\code{\link{rgb2hex}()}
Other Data Validation:
\code{\link{check_query}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},
\code{\link{flag_outlooktime}()},
\code{\link{hr_trend}()},
\code{\link{hrvar_count_all}()},
\code{\link{hrvar_count}()},
\code{\link{identify_holidayweeks}()},
\code{\link{identify_inactiveweeks}()},
\code{\link{identify_nkw}()},
\code{\link{identify_outlier}()},
\code{\link{identify_privacythreshold}()},
\code{\link{identify_query}()},
\code{\link{identify_tenure}()},
\code{\link{remove_outliers}()},
\code{\link{subject_validate_report}()},
\code{\link{subject_validate}()},
\code{\link{track_HR_change}()}
}
\concept{General}
\concept{Data Validation}
\concept{Support}

Просмотреть файл

@ -2,7 +2,8 @@
% Please edit documentation in R/flag_ch_ratio.R
\name{flag_ch_ratio}
\alias{flag_ch_ratio}
\title{Flag unusual high collaboration hours to after-hours collaboration hours ratio}
\title{Flag unusual high collaboration hours to after-hours collaboration
hours ratio}
\usage{
flag_ch_ratio(data, threshold = c(1, 30), return = "message")
}
@ -20,11 +21,13 @@ Defaults to 30.}
}}
}
\value{
A different output is returned depending on the value passed to the \code{return} argument:
A different output is returned depending on the value passed to the \code{return}
argument:
\itemize{
\item \code{"message"}: message in the console containing diagnotic summary
\item \code{"text"}: string containing diagnotic summary
\item \code{"data"}: data frame. Person-level data with flags on unusually high or low ratios
\item \code{"data"}: data frame. Person-level data with flags on unusually high or
low ratios
}
}
\description{
@ -45,6 +48,7 @@ data.frame(PersonId = c("Alice", "Bob"),
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},
\code{\link{flag_outlooktime}()},

Просмотреть файл

@ -9,10 +9,26 @@ flag_em_ratio(data, threshold = 1, return = "text")
\arguments{
\item{data}{A data frame containing a Person Query.}
\item{threshold}{Numeric value specifying the threshold for flagging. Defaults to 1.}
\item{threshold}{Numeric value specifying the threshold for flagging.
Defaults to 1.}
\item{return}{Character vector specifying what to return. Defaults to "text", with
valid options to return a data frame ("data").}
\item{return}{String specifying what to return. This must be one of the
following strings:
\itemize{
\item \code{"text"}
\item \code{"data"}
}
See \code{Value} for more information.}
}
\value{
A different output is returned depending on the value passed to the \code{return}
argument:
\itemize{
\item \code{"text"}: string. A diagnostic message.
\item \code{"data"}: data frame. Person-level data with those flagged with unusual
ratios.
}
}
\description{
This function flags persons who have an unusual ratio
@ -27,6 +43,7 @@ flag_em_ratio(sq_data)
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_extreme}()},
\code{\link{flag_outlooktime}()},

Просмотреть файл

@ -11,12 +11,30 @@ flag_extreme(data, metric, person = TRUE, threshold, return = "message")
\item{metric}{A character string specifying the metric to test.}
\item{person}{A logical value to specify whether to calculate person-averages.
Defaults to TRUE (person-averages calculated).}
\item{person}{A logical value to specify whether to calculate
person-averages. Defaults to \code{TRUE} (person-averages calculated).}
\item{threshold}{Numeric value specifying the threshold for flagging.}
\item{return}{A character string specifying what to return.}
\item{return}{String specifying what to return. This must be one of the
following strings:
\itemize{
\item \code{"text"}
\item \code{"message"}
\item \code{"table"}
}
See \code{Value} for more information.}
}
\value{
A different output is returned depending on the value passed to the \code{return}
argument:
\itemize{
\item \code{"text"}: string. A diagnostic message.
\item \code{"message"}: message on console. A diagnostic message.
\item \code{"table"}: data frame. A person-level table with \code{PersonId} and the
extreme values of the selected metric.
}
}
\description{
This is used as part of data validation to check if there are extreme values
@ -37,6 +55,7 @@ flag_extreme(sq_data, "Email_hours", person = FALSE, threshold = 15)
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_outlooktime}()},

Просмотреть файл

@ -9,11 +9,27 @@ flag_outlooktime(data, threshold = c(4, 15), return = "message")
\arguments{
\item{data}{A data frame containing a Person Query.}
\item{threshold}{A numeric vector of length two, specifying the hour threshold for flagging.
Defaults to c(4, 15).}
\item{threshold}{A numeric vector of length two, specifying the hour
threshold for flagging. Defaults to c(4, 15).}
\item{return}{String to specify what to return.
Valid options include "text" (default), "message", and "data".}
\item{return}{String specifying what to return. This must be one of the
following strings:
\itemize{
\item \code{"text"} (default)
\item \code{"message"}
\item \code{"data"}
}}
}
\value{
A different output is returned depending on the value passed to the \code{return}
argument:
\itemize{
\item \code{"text"}: string. A diagnostic message.
\item \code{"message"}: message on console. A diagnostic message.
\item \code{"data"}: data frame. Data where flag is present.
}
See \code{Value} for more information.
}
\description{
This function flags unusual outlook calendar settings for
@ -25,14 +41,22 @@ flag_outlooktime(dv_data)
# Example where Outlook Start and End times are imputed
spq_df <- sq_data
spq_df$WorkingStartTimeSetInOutlook <- "6:30"
spq_df$WorkingEndTimeSetInOutlook <- "23:30"
# Return a message
flag_outlooktime(spq_df, threshold = c(5, 13))
# Return data
flag_outlooktime(spq_df, threshold = c(5, 13), return = "data")
}
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -56,7 +56,8 @@ argument:
\item \code{"plot"}: ggplot object. A random of ten working patterns are displayed,
with diagnostic data and the Flexibility Index shown on the plot.
\item \code{"data"}: data frame. The original input data appended with the
Flexibility Index and the component scores.
Flexibility Index and the component scores. Can be used with
\code{plot_flex_index()} to recreate visuals found in \code{flex_index()}.
\item \code{"table"}: data frame. A summary table for the metric.
}
}
@ -123,12 +124,11 @@ em_data \%>\%
# Return the raw data with the computed Flexibility Index
em_data \%>\%
flex_index(return = "data")
}
}
\seealso{
Other Work Patterns:
Other Working Patterns:
\code{\link{identify_shifts_wp}()},
\code{\link{plot_flex_index}()},
\code{\link{workpatterns_area}()},
@ -137,4 +137,4 @@ Other Work Patterns:
\code{\link{workpatterns_classify}()},
\code{\link{workpatterns_hclust}()}
}
\concept{Work Patterns}
\concept{Working Patterns}

Просмотреть файл

@ -27,4 +27,20 @@ g2g_data
\description{
A demo dataset generated from a Group-to-Group Query from Workplace Analytics.
}
\seealso{
Other Data:
\code{\link{dv_data}},
\code{\link{em_data}},
\code{\link{p2p_data_sim}()}
Other Network:
\code{\link{external_network_plot}()},
\code{\link{network_g2g}()},
\code{\link{network_leiden}()},
\code{\link{network_louvain}()},
\code{\link{network_p2p}()},
\code{\link{p2p_data_sim}()}
}
\concept{Data}
\concept{Network}
\keyword{datasets}

Просмотреть файл

@ -22,20 +22,26 @@ generate_report(
\item{filename}{File name to be used in the exported HTML.}
\item{outputs}{A list of outputs to be added to the HTML report.
Note that \code{outputs}, \code{titles}, \code{echos}, and \code{levels} must have the same length}
Note that \code{outputs}, \code{titles}, \code{echos}, and \code{levels} must have the same
length}
\item{titles}{A list/vector of character strings to specify the title of the chunks.}
\item{titles}{A list/vector of character strings to specify the title of the
chunks.}
\item{subheaders}{A list/vector of character strings to specify the subheaders for each chunk.}
\item{subheaders}{A list/vector of character strings to specify the
subheaders for each chunk.}
\item{echos}{A list/vector of logical values to specify whether to display code.}
\item{echos}{A list/vector of logical values to specify whether to display
code.}
\item{levels}{A list/vector of numeric value to specify the header level of the chunk.}
\item{levels}{A list/vector of numeric value to specify the header level of
the chunk.}
\item{theme}{Character vector to specify theme to be used for the report.
E.g. "united", "default".}
E.g. \code{"united"}, \code{"default"}.}
\item{preamble}{A preamble to appear at the beginning of the report, passed as a text string.}
\item{preamble}{A preamble to appear at the beginning of the report, passed
as a text string.}
}
\value{
An HTML report with the same file name as specified in the arguments is

Просмотреть файл

@ -42,6 +42,7 @@ hr_trend(dv_data, return = "table")
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -81,10 +81,12 @@ Other Visualization:
\code{\link{email_line}()},
\code{\link{email_rank}()},
\code{\link{email_summary}()},
\code{\link{email_trend}()}
\code{\link{email_trend}()},
\code{\link{external_network_plot}()}
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -43,6 +43,7 @@ hrvar_count_all(sq_data, return = "table")
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -40,6 +40,7 @@ identify_holidayweeks(sq_data, return = "plot")
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -27,6 +27,7 @@ As best practice, run this function prior to any analysis to remove atypical col
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -27,6 +27,7 @@ Returns the \% of non-knowledge workers identified by Organization, and optional
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -32,11 +32,9 @@ identify_outlier(sq_data, metric = "Collaboration_hours")
}
\seealso{
Other General:
\code{\link{extract_hr}()}
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -34,6 +34,7 @@ The method consists in reviewing each individual HR attribute, and count the dis
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -31,6 +31,7 @@ identify_query(mtcars) # Will return an error
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -76,7 +76,7 @@ em_data \%>\% identify_shifts_wp(return = "table")
}
\seealso{
Other Work Patterns:
Other Working Patterns:
\code{\link{flex_index}()},
\code{\link{plot_flex_index}()},
\code{\link{workpatterns_area}()},
@ -85,4 +85,4 @@ Other Work Patterns:
\code{\link{workpatterns_classify}()},
\code{\link{workpatterns_hclust}()}
}
\concept{Work Patterns}
\concept{Working Patterns}

Просмотреть файл

@ -45,6 +45,7 @@ identify_tenure(sq_data2)
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -36,9 +36,5 @@ horizontal axis.
# Return plot
sq_data \%>\% internal_network_plot(return = "plot")
}
\seealso{
Other Connectivity:
\code{\link{external_network_plot}()}
}
\concept{Connectivity}

Просмотреть файл

@ -85,3 +85,13 @@ g2g_data \%>\%
}
\seealso{
Other Network:
\code{\link{external_network_plot}()},
\code{\link{g2g_data}},
\code{\link{network_leiden}()},
\code{\link{network_louvain}()},
\code{\link{network_p2p}()},
\code{\link{p2p_data_sim}()}
}
\concept{Network}

Просмотреть файл

@ -2,7 +2,8 @@
% Please edit documentation in R/network_leiden.R
\name{network_leiden}
\alias{network_leiden}
\title{Implement the Leiden community detection on a Person to Person network query}
\title{Implement the Leiden community detection on a Person to Person network
query}
\usage{
network_leiden(
data,
@ -28,44 +29,61 @@ network_leiden(
\item{font_col}{String to specify font and link colour.}
\item{algorithm}{String to specify the node placement algorithm to be used. Defaults to "fr" for the force-directed
algorithm of Fruchterman and Reingold. See \url{https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html} for a
full list of options.}
\item{algorithm}{String to specify the node placement algorithm to be used.
Defaults to \code{"fr"} for the force-directed algorithm of Fruchterman and
Reingold. See
\url{https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html} for a full
list of options.}
\item{path}{File path for saving the PDF output. Defaults to a timestamped path based on current parameters.}
\item{path}{File path for saving the PDF output. Defaults to a timestamped
path based on current parameters.}
\item{node_alpha}{A numeric value between 0 and 1 to specify the transparency of the nodes.}
\item{node_alpha}{A numeric value between 0 and 1 to specify the transparency
of the nodes.}
\item{res}{Resolution parameter to be passed to \code{leiden::leiden()}. Defaults to 0.5.}
\item{res}{Resolution parameter to be passed to \code{leiden::leiden()}. Defaults
to 0.5.}
\item{seed}{Seed for the random number generator passed to \code{leiden::leiden()} to ensure consistency. Only applicable
when \code{display} is set to "leiden".}
\item{seed}{Seed for the random number generator passed to \code{leiden::leiden()}
to ensure consistency. Only applicable when \code{display} is set to \code{"leiden"}.}
\item{desc_hrvar}{Character vector of length 3 containing the HR attributes to use when returning the
"describe" output. See \code{network_describe()}.}
\item{desc_hrvar}{Character vector of length 3 containing the HR attributes
to use when returning the \code{"describe"} output. See \code{network_describe()}.}
\item{return}{String specifying what output to return. Defaults to "plot-leiden". Valid return options include:
\item{return}{String specifying what output to return. Defaults to "plot-leiden". Valid
return options include:
\itemize{
\item 'plot-leiden': return a network plot coloured by leiden communities, saving a PDF to path.
\item 'plot-hrvar': return a network plot coloured by HR attribute, saving a PDF to path.
\item 'plot-sankey': return a sankey plot combining communities and HR attribute.
\item 'table': return a vertex summary table with counts in communities and HR attribute.
\item 'data': return a vertex data file that matches vertices with communities and HR attributes.
\item 'describe': return a list of data frames which describe each of the identified communities.
The first data frame is a summary table of all the communities.
\item 'network': return igraph object.
\item \code{'plot-leiden'}: return a network plot coloured by leiden communities,
saving a PDF to path.
\item \code{'plot-hrvar'}: return a network plot coloured by HR attribute, saving a
PDF to path.
\item \code{'plot-sankey'}: return a sankey plot combining communities and HR
attribute.
\item \code{'table'}: return a vertex summary table with counts in communities and
HR attribute.
\item \code{'data'}: return a vertex data file that matches vertices with
communities and HR attributes.
\item \code{'describe'}: return a list of data frames which describe each of the
identified communities. The first data frame is a summary table of all the
communities.
\item \code{'network'}: return igraph object.
}}
\item{size_threshold}{Numeric value representing the maximum number of edges before \code{network_leiden()}
switches to use a more efficient, but less elegant plotting method (native igraph). Defaults to 5000.
Set as \code{0} to co-erce to a fast plotting method every time, and \code{Inf} to always use the default plotting
method.}
\item{size_threshold}{Numeric value representing the maximum number of edges
before \code{network_leiden()} switches to use a more efficient, but less
elegant plotting method (native igraph). Defaults to 5000. Set as \code{0} to
coerce to a fast plotting method every time, and \code{Inf} to always use the
default plotting method.}
}
\value{
See \code{return}.
}
\description{
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
Take a P2P network query and implement the Leiden community detection method. To run
this function, you will require all the pre-requisites of the \strong{leiden} package installed,
which includes Python and \strong{reticulate}.
Take a P2P network query and implement the Leiden community detection method.
To run this function, you will require all the pre-requisites of the
'leiden' package installed, which includes Python and 'reticulate'.
}
\examples{
\donttest{
@ -80,3 +98,13 @@ p2p_data \%>\%
}
\seealso{
Other Network:
\code{\link{external_network_plot}()},
\code{\link{g2g_data}},
\code{\link{network_g2g}()},
\code{\link{network_louvain}()},
\code{\link{network_p2p}()},
\code{\link{p2p_data_sim}()}
}
\concept{Network}

Просмотреть файл

@ -2,7 +2,8 @@
% Please edit documentation in R/network_louvain.R
\name{network_louvain}
\alias{network_louvain}
\title{Implement the Louvain community detection on a Person to Person network query}
\title{Implement the Louvain community detection on a Person to Person
network query}
\usage{
network_louvain(
data,
@ -26,38 +27,54 @@ network_louvain(
\item{font_col}{String to specify font and link colour.}
\item{node_alpha}{A numeric value between 0 and 1 to specify the transparency of the nodes.}
\item{node_alpha}{A numeric value between 0 and 1 to specify the transparency
of the nodes.}
\item{algorithm}{String to specify the node placement algorithm to be used. Defaults to "fr" for the force-directed
algorithm of Fruchterman and Reingold. See \url{https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html} for a
full list of options.}
\item{algorithm}{String to specify the node placement algorithm to be used.
Defaults to \code{"fr"} for the force-directed algorithm of Fruchterman and
Reingold. See
\url{https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html} for a full
list of options.}
\item{path}{File path for saving the PDF output. Defaults to a timestamped path based on current parameters.}
\item{path}{File path for saving the PDF output. Defaults to a timestamped
path based on current parameters.}
\item{desc_hrvar}{Character vector of length 3 containing the HR attributes to use when returning the
"describe" output. See \code{network_describe()}.}
\item{desc_hrvar}{Character vector of length 3 containing the HR attributes
to use when returning the \code{"describe"} output. See \code{network_describe()}.}
\item{return}{String specifying what output to return. Defaults to "plot-louvain". Valid return options include:
\item{return}{String specifying what output to return. Defaults to "plot-louvain". Valid
return options include:
\itemize{
\item 'plot-louvain': return a network plot coloured by Louvain communities, saving a PDF to path.
\item 'plot-hrvar': return a network plot coloured by HR attribute, saving a PDF to path.
\item 'plot-sankey': return a sankey plot combining communities and HR attribute.
\item 'table': return a vertex summary table with counts in communities and HR attribute.
\item 'data': return a vertex data file that matches vertices with communities and HR attributes.
\item 'describe': return a list of data frames which describe each of the identified communities.
The first data frame is a summary table of all the communities.
\item 'network': return igraph object.
\item \code{'plot-louvain'}: return a network plot coloured by Louvain communities,
saving a PDF to path.
\item \code{'plot-hrvar'}: return a network plot coloured by HR attribute, saving a
PDF to path.
\item \code{'plot-sankey'}: return a sankey plot combining communities and HR
attribute.
\item \code{'table'}: return a vertex summary table with counts in communities and
HR attribute.
\item \code{'data'}: return a vertex data file that matches vertices with
communities and HR attributes.
\item \code{'describe'}: return a list of data frames which describe each of the
identified communities. The first data frame is a summary table of all the
communities.
\item \code{'network'}: return igraph object.
}}
\item{size_threshold}{Numeric value representing the maximum number of edges before \code{network_leiden()}
switches to use a more efficient, but less elegant plotting method (native igraph). Defaults to 5000.
Set as \code{0} to co-erce to a fast plotting method every time, and \code{Inf} to always use the default plotting
method.}
\item{size_threshold}{Numeric value representing the maximum number of edges
before \code{network_leiden()} switches to use a more efficient, but less
elegant plotting method (native igraph). Defaults to 5000. Set as \code{0} to
coerce to a fast plotting method every time, and \code{Inf} to always use the
default plotting method.}
}
\value{
See \code{return}.
}
\description{
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
Take a P2P network query and implement the Louvain community detection method. The
\strong{igraph} implementation of the Louvain method is used.
Take a P2P network query and implement the Louvain community detection
method. The 'igraph' implementation of the Louvain method is used.
}
\examples{
# Simulate a small person-to-person dataset
@ -69,3 +86,13 @@ p2p_data \%>\%
return = "plot")
}
\seealso{
Other Network:
\code{\link{external_network_plot}()},
\code{\link{g2g_data}},
\code{\link{network_g2g}()},
\code{\link{network_leiden}()},
\code{\link{network_p2p}()},
\code{\link{p2p_data_sim}()}
}
\concept{Network}

Просмотреть файл

@ -27,64 +27,79 @@ network_p2p(
\item{hrvar}{String containing the label for the HR attribute.}
\item{display}{String determining what output to return. Valid values include:
\item{display}{String determining what output to return. Valid values
include:
\itemize{
\item \code{"hrvar"} (default): compute analysis or visuals without computing communities.
\item \code{"louvain"}: compute analysis or visuals with community detection, using the Louvain
algorithm.
\item \code{"leiden"}: compute analysis or visuals with community detection, using the Leiden algorithm.
This requires all the pre-requisites of the \strong{leiden} package installed,
which includes Python and \strong{reticulate}.
\item \code{"hrvar"} (default): compute analysis or visuals without computing
communities.
\item \code{"louvain"}: compute analysis or visuals with community detection, using
the Louvain algorithm.
\item \code{"leiden"}: compute analysis or visuals with community detection, using
the Leiden algorithm. This requires all the pre-requisites of the
\strong{leiden} package installed, which includes Python and \strong{reticulate}.
}}
\item{return}{String specifying what output to return. Defaults to "plot".
Valid return options include:
\itemize{
\item \code{'plot'}: return a network plot.
\item \code{'sankey'}: return a sankey plot combining communities and HR attribute. This is only valid if
a community detection method is selected at \code{display}.
\item \code{'table'}: return a vertex summary table with counts in communities and HR attribute.
\item \code{'data'}: return a vertex data file that matches vertices with communities and HR attributes.
\item \code{'describe'}: return a list of data frames which describe each of the identified communities.
The first data frame is a summary table of all the communities. This is only valid if a community
detection method is selected at \code{display}.
\item \code{'sankey'}: return a sankey plot combining communities and HR attribute.
This is only valid if a community detection method is selected at
\code{display}.
\item \code{'table'}: return a vertex summary table with counts in communities and
HR attribute.
\item \code{'data'}: return a vertex data file that matches vertices with
communities and HR attributes.
\item \code{'describe'}: return a list of data frames which describe each of the
identified communities. The first data frame is a summary table of all the
communities. This is only valid if a community detection method is selected
at \code{display}.
\item \code{'network'}: return igraph object.
}}
\item{path}{File path for saving the PDF output. Defaults to a timestamped path based on current parameters.}
\item{path}{File path for saving the PDF output. Defaults to a timestamped
path based on current parameters.}
\item{desc_hrvar}{Character vector of length 3 containing the HR attributes to use when returning the
"describe" output. See \code{network_describe()}.}
\item{desc_hrvar}{Character vector of length 3 containing the HR attributes
to use when returning the \code{"describe"} output. See \code{network_describe()}.}
\item{bg_fill}{String to specify background fill colour.}
\item{font_col}{String to specify font and link colour.}
\item{legend_pos}{String to specify position of legend. Defaults to "bottom". See \code{ggplot2::theme()}.}
\item{legend_pos}{String to specify position of legend. Defaults to
\code{"bottom"}. See \code{ggplot2::theme()}.}
\item{palette}{Function for generating a colour palette with a single argument \code{n}. Uses "rainbow" by default.}
\item{palette}{Function for generating a colour palette with a single
argument \code{n}. Uses "rainbow" by default.}
\item{node_alpha}{A numeric value between 0 and 1 to specify the transparency of the nodes.}
\item{node_alpha}{A numeric value between 0 and 1 to specify the transparency
of the nodes.}
\item{res}{Resolution parameter to be passed to \code{leiden::leiden()}. Defaults to 0.5.}
\item{res}{Resolution parameter to be passed to \code{leiden::leiden()}. Defaults
to 0.5.}
\item{seed}{Seed for the random number generator passed to \code{leiden::leiden()} to ensure consistency. Only applicable
when \code{display} is set to "leiden".}
\item{seed}{Seed for the random number generator passed to \code{leiden::leiden()}
to ensure consistency. Only applicable when \code{display} is set to \code{"leiden"}.}
\item{algorithm}{String to specify the node placement algorithm to be used. Defaults to "fr" for the force-directed
algorithm of Fruchterman and Reingold. See \url{https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html} for a
full list of options.}
\item{algorithm}{String to specify the node placement algorithm to be used.
Defaults to \code{"fr"} for the force-directed algorithm of Fruchterman and
Reingold. See
\url{https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html} for a full
list of options.}
\item{size_threshold}{Numeric value representing the maximum number of edges before \code{network_leiden()}
switches to use a more efficient, but less elegant plotting method (native igraph). Defaults to 5000.
Set as \code{0} to co-erce to a fast plotting method every time, and \code{Inf} to always use the default plotting
method.}
\item{size_threshold}{Numeric value representing the maximum number of edges
before \code{network_leiden()} switches to use a more efficient, but less
elegant plotting method (native igraph). Defaults to 5000. Set as \code{0} to
coerce to a fast plotting method every time, and \code{Inf} to always use the
default plotting method.}
}
\description{
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
Pass a data frame containing a person-to-person query and return a network visualization.
Options are available for community detection using either the Louvain or the Leiden algorithms.
Pass a data frame containing a person-to-person query and return a network
visualization. Options are available for community detection using either the
Louvain or the Leiden algorithms.
}
\examples{
# Simulate a small person-to-person dataset
@ -130,3 +145,13 @@ p2p_data \%>\%
algorithm = "fr")
}
\seealso{
Other Network:
\code{\link{external_network_plot}()},
\code{\link{g2g_data}},
\code{\link{network_g2g}()},
\code{\link{network_leiden}()},
\code{\link{network_louvain}()},
\code{\link{p2p_data_sim}()}
}
\concept{Network}

Просмотреть файл

@ -18,16 +18,33 @@ the lattice will be connected.}
}
\description{
Generate an person-to-person query / edgelist based on the graph
according to the Watts-Strogatz small-world network model. Organizational data
fields are also simulated for \code{Organization}, \code{LevelDesignation}, and \code{City}.
according to the Watts-Strogatz small-world network model. Organizational
data fields are also simulated for \code{Organization}, \code{LevelDesignation}, and
\code{City}.
}
\details{
This is a wrapper around \code{igraph::watts.strogatz.game()}. See igraph documentation
for details on methodology. Loop edges and multiple edges are disabled. Size of the
network can be changing the arguments \code{size} and \code{nei}.
This is a wrapper around \code{igraph::watts.strogatz.game()}. See igraph
documentation for details on methodology. Loop edges and multiple edges are
disabled. Size of the network can be changing the arguments \code{size} and \code{nei}.
}
\examples{
# Simulate a p2p dataset with 800 edges
p2p_data_sim(size = 200, nei = 4)
}
\seealso{
Other Data:
\code{\link{dv_data}},
\code{\link{em_data}},
\code{\link{g2g_data}}
Other Network:
\code{\link{external_network_plot}()},
\code{\link{g2g_data}},
\code{\link{network_g2g}()},
\code{\link{network_leiden}()},
\code{\link{network_louvain}()},
\code{\link{network_p2p}()}
}
\concept{Data}
\concept{Network}

Просмотреть файл

@ -26,34 +26,32 @@ working patterns; "time" plots the Flexibility Index for the group over time.}
\item{end_hour}{See \code{flex_index()}.}
}
\value{
ggplot object. See \code{method}.
}
\description{
This is a helper function for plotting visualizations for the Flexibility Index
using the \code{data} output from \code{flex_index()}. This is used within \code{flex_index()} itself
as an internal function.
This is a helper function for plotting visualizations for the
Flexibility Index using the \code{data} output from \code{flex_index()}. This is used
within \code{flex_index()} itself as an internal function.
}
\examples{
\donttest{
# Pre-calculate Flexibility Index
fi_output <- flex_index(em_data, return = "data")
# Examples of how to test the plotting options individually
# Sample of 10 work patterns
em_data \%>\%
flex_index(return = "data") \%>\%
plot_flex_index(method = "sample")
plot_flex_index(fi_output, method = "sample")
# 10 most common work patterns
em_data \%>\%
flex_index(return = "data") \%>\%
plot_flex_index(method = "common")
plot_flex_index(fi_output, method = "common")
# Plot Flexibility Index over time
em_data \%>\%
flex_index(return = "data") \%>\%
plot_flex_index(method = "time")
}
plot_flex_index(fi_output, method = "time")
}
\seealso{
Other Work Patterns:
Other Working Patterns:
\code{\link{flex_index}()},
\code{\link{identify_shifts_wp}()},
\code{\link{workpatterns_area}()},
@ -62,4 +60,4 @@ Other Work Patterns:
\code{\link{workpatterns_classify}()},
\code{\link{workpatterns_hclust}()}
}
\concept{Work Patterns}
\concept{Working Patterns}

Просмотреть файл

@ -39,6 +39,7 @@ For mature functions to remove common outliers, please see the following:
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -18,6 +18,7 @@ Other Support:
\code{\link{check_inputs}()},
\code{\link{combine_signals}()},
\code{\link{cut_hour}()},
\code{\link{extract_date_range}()}
\code{\link{extract_date_range}()},
\code{\link{extract_hr}()}
}
\concept{Support}

Просмотреть файл

@ -27,6 +27,7 @@ Additional option to return the underlying data with a flag of items for review.
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -37,6 +37,7 @@ Returns a HTML report by default.
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -53,6 +53,7 @@ dv_data \%>\% track_HR_change()
\seealso{
Other Data Validation:
\code{\link{check_query}()},
\code{\link{extract_hr}()},
\code{\link{flag_ch_ratio}()},
\code{\link{flag_em_ratio}()},
\code{\link{flag_extreme}()},

Просмотреть файл

@ -68,7 +68,7 @@ workpatterns_area(em_data, return = "table")
}
\seealso{
Other Work Patterns:
Other Working Patterns:
\code{\link{flex_index}()},
\code{\link{identify_shifts_wp}()},
\code{\link{plot_flex_index}()},
@ -77,4 +77,4 @@ Other Work Patterns:
\code{\link{workpatterns_classify}()},
\code{\link{workpatterns_hclust}()}
}
\concept{Work Patterns}
\concept{Working Patterns}

Просмотреть файл

@ -158,7 +158,7 @@ em_data \%>\% workpatterns_classify(method = "pav", return = "plot-area")
}
\seealso{
Other Work Patterns:
Other Working Patterns:
\code{\link{flex_index}()},
\code{\link{identify_shifts_wp}()},
\code{\link{plot_flex_index}()},
@ -167,4 +167,4 @@ Other Work Patterns:
\code{\link{workpatterns_classify_pav}()},
\code{\link{workpatterns_hclust}()}
}
\concept{Work Patterns}
\concept{Working Patterns}

Просмотреть файл

@ -60,7 +60,7 @@ workpatterns_classify_bw(em_data)
}
\seealso{
Other Work Patterns:
Other Working Patterns:
\code{\link{flex_index}()},
\code{\link{identify_shifts_wp}()},
\code{\link{plot_flex_index}()},
@ -69,4 +69,4 @@ Other Work Patterns:
\code{\link{workpatterns_classify}()},
\code{\link{workpatterns_hclust}()}
}
\concept{Work Patterns}
\concept{Working Patterns}

Просмотреть файл

@ -66,7 +66,7 @@ workpatterns_classify_pav(em_data, return = "plot-area")
}
\seealso{
Other Work Patterns:
Other Working Patterns:
\code{\link{flex_index}()},
\code{\link{identify_shifts_wp}()},
\code{\link{plot_flex_index}()},
@ -75,4 +75,4 @@ Other Work Patterns:
\code{\link{workpatterns_classify}()},
\code{\link{workpatterns_hclust}()}
}
\concept{Work Patterns}
\concept{Working Patterns}

Просмотреть файл

@ -101,7 +101,7 @@ workpatterns_hclust(em_data,
}
\seealso{
Other Work Patterns:
Other Working Patterns:
\code{\link{flex_index}()},
\code{\link{identify_shifts_wp}()},
\code{\link{plot_flex_index}()},
@ -110,4 +110,4 @@ Other Work Patterns:
\code{\link{workpatterns_classify_pav}()},
\code{\link{workpatterns_classify}()}
}
\concept{Work Patterns}
\concept{Working Patterns}