зеркало из https://github.com/microsoft/wpa.git
docs: roxygen2 update
This commit is contained in:
Родитель
b3229ae5ef
Коммит
700ab5644d
|
@ -16,12 +16,13 @@
|
|||
#'
|
||||
#' @param mingroup Numeric value setting the privacy threshold / minimum group size, defaults to 5.
|
||||
#'
|
||||
#' @param signals Character vector to specify which collaboration metrics to use:
|
||||
#' - "email" (default) for emails only
|
||||
#' - "IM" for Teams messages only
|
||||
#' - "unscheduled_calls" for Unscheduled Calls only
|
||||
#' - "meetings" for Meetings only
|
||||
#' - or a combination of signals, such as `c("email", "IM")`
|
||||
#' @param signals Character vector to specify which collaboration metrics to
|
||||
#' use:
|
||||
#' - a combination of signals, such as `c("email", "IM")` (default)
|
||||
#' - `"email"` for emails only
|
||||
#' - `"IM"` for Teams messages only
|
||||
#' - `"unscheduled_calls"` for Unscheduled Calls only
|
||||
#' - `"meetings"` for Meetings only
|
||||
#'
|
||||
#' @param return Character vector to specify what to return. Valid options include:
|
||||
#' - "plot": returns an overlapping area plot (default)
|
||||
|
|
|
@ -23,9 +23,12 @@
|
|||
#' over time
|
||||
#'
|
||||
#' @param signals Character vector to specify which collaboration metrics to
|
||||
#' use: - "email" (default) for emails only - "IM" for Teams messages only, -
|
||||
#' "unscheduled_calls" for Unscheduled Calls only - "meetings" for Meetings
|
||||
#' only - or a combination of signals, such as `c("email", "IM")`
|
||||
#' use:
|
||||
#' - a combination of signals, such as `c("email", "IM")` (default)
|
||||
#' - `"email"` for emails only
|
||||
#' - `"IM"` for Teams messages only
|
||||
#' - `"unscheduled_calls"` for Unscheduled Calls only
|
||||
#' - `"meetings"` for Meetings only
|
||||
#'
|
||||
#' @param active_threshold A numeric value specifying the minimum number of
|
||||
#' signals to be greater than in order to qualify as _active_. Defaults to 0.
|
||||
|
|
|
@ -61,7 +61,7 @@ Flexibility Index and the component scores.
|
|||
}
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}}
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
|
||||
|
||||
Pass an Hourly Collaboration query and compute a Flexibility Index for the
|
||||
entire population. The Flexibility Index is a quantitative measure of the
|
||||
|
|
|
@ -15,7 +15,7 @@ network_describe(
|
|||
\item{hrvar}{Character vector of length 3 containing the HR attributes to be used.}
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}}
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
|
||||
Returns a data frame that gives a percentage of the group combinations that best represent
|
||||
the population provided. Uses a person to person query.
|
||||
}
|
||||
|
|
|
@ -62,7 +62,7 @@ Set as \code{0} to co-erce to a fast plotting method every time, and \code{Inf}
|
|||
method.}
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}}
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
|
||||
Take a P2P network query and implement the Leiden community detection method. To run
|
||||
this function, you will require all the pre-requisites of the \strong{leiden} package installed,
|
||||
which includes Python and \strong{reticulate}.
|
||||
|
|
|
@ -55,7 +55,7 @@ Set as \code{0} to co-erce to a fast plotting method every time, and \code{Inf}
|
|||
method.}
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}}
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
|
||||
Take a P2P network query and implement the Louvain community detection method. The
|
||||
\strong{igraph} implementation of the Louvain method is used.
|
||||
}
|
||||
|
|
|
@ -81,7 +81,7 @@ Set as \code{0} to co-erce to a fast plotting method every time, and \code{Inf}
|
|||
method.}
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}}
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
|
||||
|
||||
Pass a data frame containing a person-to-person query and return a network visualization.
|
||||
Options are available for community detection using either the Louvain or the Leiden algorithms.
|
||||
|
|
|
@ -38,7 +38,8 @@ of the clusters as per \code{keymetrics_scan()}.
|
|||
}
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#questioning}{\figure{lifecycle-questioning.svg}{options: alt='[Questioning]'}}}{\strong{[Questioning]}}
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#questioning'><img src='figures/lifecycle-questioning.svg' alt='Questioning lifecycle'></a>}}{\strong{Questioning}}
|
||||
|
||||
Apply hierarchical clustering to selected metrics. Person averages are computed prior to clustering.
|
||||
The hierarchical clustering uses cosine distance and the ward.D method
|
||||
of agglomeration.
|
||||
|
|
|
@ -18,7 +18,7 @@ having removed the person-weeks that are below 2 standard
|
|||
deviations of each individual's collaboration activity.
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}}
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
|
||||
This function takes in a selected metric and uses z-score (number of standard
|
||||
deviations) to identify and remove outlier weeks for individuals across time. There are applications
|
||||
in this for removing weeks with abnormally low collaboration
|
||||
|
|
|
@ -23,13 +23,14 @@ defaults to "Organization" but accepts any character vector, e.g. "LevelDesignat
|
|||
|
||||
\item{mingroup}{Numeric value setting the privacy threshold / minimum group size, defaults to 5.}
|
||||
|
||||
\item{signals}{Character vector to specify which collaboration metrics to use:
|
||||
\item{signals}{Character vector to specify which collaboration metrics to
|
||||
use:
|
||||
\itemize{
|
||||
\item "email" (default) for emails only
|
||||
\item "IM" for Teams messages only
|
||||
\item "unscheduled_calls" for Unscheduled Calls only
|
||||
\item "meetings" for Meetings only
|
||||
\item or a combination of signals, such as \code{c("email", "IM")}
|
||||
\item a combination of signals, such as \code{c("email", "IM")} (default)
|
||||
\item \code{"email"} for emails only
|
||||
\item \code{"IM"} for Teams messages only
|
||||
\item \code{"unscheduled_calls"} for Unscheduled Calls only
|
||||
\item \code{"meetings"} for Meetings only
|
||||
}}
|
||||
|
||||
\item{return}{Character vector to specify what to return. Valid options include:
|
||||
|
|
|
@ -22,9 +22,14 @@ workpatterns_classify_bw(
|
|||
Defaults to NULL. This only affects the function when "table" is returned.}
|
||||
|
||||
\item{signals}{Character vector to specify which collaboration metrics to
|
||||
use: - "email" (default) for emails only - "IM" for Teams messages only, -
|
||||
"unscheduled_calls" for Unscheduled Calls only - "meetings" for Meetings
|
||||
only - or a combination of signals, such as \code{c("email", "IM")}}
|
||||
use:
|
||||
\itemize{
|
||||
\item a combination of signals, such as \code{c("email", "IM")} (default)
|
||||
\item \code{"email"} for emails only
|
||||
\item \code{"IM"} for Teams messages only
|
||||
\item \code{"unscheduled_calls"} for Unscheduled Calls only
|
||||
\item \code{"meetings"} for Meetings only
|
||||
}}
|
||||
|
||||
\item{start_hour}{A character vector specifying start hours,
|
||||
e.g. "0900"}
|
||||
|
@ -43,7 +48,7 @@ archetypes - "table": returns a summary table of the archetypes -
|
|||
over time}
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}} Apply a rule based
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}} Apply a rule based
|
||||
algorithm to emails sent by hour of day, using the binary week-based (bw)
|
||||
method.
|
||||
}
|
||||
|
|
|
@ -48,7 +48,7 @@ e.g. "1700"}
|
|||
}}
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}}
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
|
||||
Apply a rule based algorithm to emails or instant messages sent by hour of day.
|
||||
This uses a person-average volume-based (pav) method.
|
||||
}
|
||||
|
|
|
@ -68,7 +68,8 @@ are shown, e.g. x\% of signals are sent by y hour of the day.
|
|||
}
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}}
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
|
||||
|
||||
Apply hierarchical clustering to emails sent by hour of day.
|
||||
The hierarchical clustering uses cosine distance and the ward.D method
|
||||
of agglomeration.
|
||||
|
|
|
@ -38,7 +38,7 @@ generated in the working directory. No outputs are directly returned by the
|
|||
function.
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}}
|
||||
\ifelse{html}{\out{<a href='https://www.tidyverse.org/lifecycle/#experimental'><img src='figures/lifecycle-experimental.svg' alt='Experimental lifecycle'></a>}}{\strong{Experimental}}
|
||||
|
||||
This function takes a Hourly Collaboration query and generates a HTML report
|
||||
on working patterns archetypes. Archetypes are created using the binary-week
|
||||
|
|
Загрузка…
Ссылка в новой задаче