зеркало из https://github.com/microsoft/wpa.git
Merge branch 'main' into refactor/streamline-network_p2p
This commit is contained in:
Коммит
e801b49137
|
@ -7,7 +7,7 @@ jobs:
|
|||
runs-on: macOS-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: r-lib/actions/setup-r@master
|
||||
- uses: r-lib/actions/setup-r@v2-branch
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
install.packages(c("remotes", "rcmdcheck"))
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
Version: 1.7.0
|
||||
Date: 2022-06-06 13:37:15 UTC
|
||||
SHA: 7aefaa599891ef7c20db669a8f52b59e80ef48ef
|
||||
Version: 1.8.1
|
||||
Date: 2023-01-27 11:02:41 UTC
|
||||
SHA: da6fe2da817d04f06e90017f92f82cb788d093df
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
Package: wpa
|
||||
Type: Package
|
||||
Title: Tools for Analysing and Visualising Viva Insights Data
|
||||
Version: 1.7.0.9000
|
||||
Version: 1.8.1
|
||||
Authors@R: c(
|
||||
person(given = "Martin", family = "Chan", role = c("aut", "cre"), email = "martin.chan@microsoft.com"),
|
||||
person(given = "Carlos", family = "Morales", role = "aut", email = "carlos.morales@microsoft.com"),
|
||||
|
|
|
@ -96,6 +96,7 @@ export(hrvar_count)
|
|||
export(hrvar_count_all)
|
||||
export(hrvar_trend)
|
||||
export(identify_churn)
|
||||
export(identify_datefreq)
|
||||
export(identify_holidayweeks)
|
||||
export(identify_inactiveweeks)
|
||||
export(identify_nkw)
|
||||
|
@ -148,6 +149,7 @@ export(one2one_summary)
|
|||
export(one2one_trend)
|
||||
export(p2p_data_sim)
|
||||
export(p_test)
|
||||
export(pad2)
|
||||
export(pairwise_count)
|
||||
export(period_change)
|
||||
export(personas_hclust)
|
||||
|
|
8
NEWS.md
8
NEWS.md
|
@ -1,7 +1,13 @@
|
|||
# wpa (development version)
|
||||
# wpa 1.8.1
|
||||
|
||||
- fixed issue due to a 'tidyr' update (see #233).
|
||||
|
||||
# wpa 1.8.0
|
||||
|
||||
- Updated and improved output and algorithm for `workpatterns_classify()`
|
||||
- Additional visual options for `workpatterns_classify()` and `flex_index()`
|
||||
- Added the `external_*` family of functions to visualize the metric `Collaboration_hours_external`
|
||||
- Added experimental function `identify_datefreq()` for detecting date frequency (#131)
|
||||
|
||||
# wpa 1.7.0
|
||||
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
#' @inherit create_dist return
|
||||
#'
|
||||
#' @family Visualization
|
||||
#' @family External
|
||||
#' @family External Collaboration
|
||||
#'
|
||||
#' @examples
|
||||
#' # Return plot
|
||||
|
@ -38,13 +38,18 @@ external_dist <- function(data,
|
|||
return = "plot",
|
||||
cut = c(5, 10, 15)) {
|
||||
|
||||
# Calculate Internal / External Collaboration time
|
||||
plot_data <- data %>% mutate(External_collaboration_hours = Collaboration_hours_external)
|
||||
# Rename metric
|
||||
plot_data <-
|
||||
data %>%
|
||||
mutate(External_collaboration_hours = Collaboration_hours_external)
|
||||
|
||||
plot_data %>% create_dist(metric = "External_collaboration_hours",
|
||||
hrvar = hrvar,
|
||||
mingroup = mingroup,
|
||||
return = return,
|
||||
cut = cut,
|
||||
dist_colours = c("#3F7066", "#64B4A4", "#B1EDE1","#CBF3EB"))
|
||||
plot_data %>%
|
||||
create_dist(
|
||||
metric = "External_collaboration_hours",
|
||||
hrvar = hrvar,
|
||||
mingroup = mingroup,
|
||||
return = return,
|
||||
cut = cut,
|
||||
dist_colours = c("#3F7066", "#64B4A4", "#B1EDE1","#CBF3EB")
|
||||
)
|
||||
}
|
||||
|
|
|
@ -14,10 +14,10 @@
|
|||
#' @inherit create_stacked return
|
||||
#'
|
||||
#' @family Visualization
|
||||
#' @family External
|
||||
#' @family External Collaboration
|
||||
#'
|
||||
#' @examples
|
||||
#' # Return a plot
|
||||
#' # Return a plot
|
||||
#' external_sum(sq_data, hrvar = "LevelDesignation")
|
||||
#'
|
||||
#' # Return summary table
|
||||
|
@ -32,9 +32,9 @@ external_sum <- function(data,
|
|||
return = "plot"){
|
||||
|
||||
|
||||
# Calculate Internal / External Collaboration time
|
||||
plot_data <- data %>% mutate(Internal_hours= Collaboration_hours - Collaboration_hours_external) %>% mutate(External_hours= Collaboration_hours_external)
|
||||
|
||||
# Calculate Internal / External Collaboration time
|
||||
plot_data <- data %>% mutate(Internal_hours= Collaboration_hours - Collaboration_hours_external) %>% mutate(External_hours= Collaboration_hours_external)
|
||||
|
||||
# Plot Internal / External Collaboration time by Organization
|
||||
plot_data %>% create_stacked(hrvar = hrvar, metrics = c("Internal_hours", "External_hours"), plot_title = "Internal and External Collaboration Hours", stack_colours = stack_colours, mingroup = mingroup, return = return)
|
||||
|
||||
|
|
|
@ -257,6 +257,9 @@ utils::globalVariables(
|
|||
"HRAttribute",
|
||||
"identifier",
|
||||
"PersonasNet",
|
||||
"Unique values"
|
||||
"Unique values",
|
||||
"Collaboration_hours_external",
|
||||
".GRP",
|
||||
"Id"
|
||||
)
|
||||
)
|
||||
|
|
|
@ -0,0 +1,118 @@
|
|||
# --------------------------------------------------------------------------------------------
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License. See LICENSE.txt in the project root for license information.
|
||||
# --------------------------------------------------------------------------------------------
|
||||
|
||||
#' @title Identify date frequency based on a series of dates
|
||||
#'
|
||||
#' @description
|
||||
#' `r lifecycle::badge('experimental')`
|
||||
#'
|
||||
#' Takes a vector of dates and identify whether the frequency is 'daily',
|
||||
#' 'weekly', or 'monthly'. The primary use case for this function is to provide
|
||||
#' an accurate description of the query type used and for raising errors should
|
||||
#' a wrong date grouping be used in the data input.
|
||||
#'
|
||||
#' @param x Vector containing a series of dates.
|
||||
#'
|
||||
#' @details
|
||||
#' Date frequency detection works as follows:
|
||||
#' - If at least three days of the week are present (e.g., Monday, Wednesday,
|
||||
#' Thursday) in the series, then the series is classified as 'daily'
|
||||
#' - If the total number of months in the series is equal to the length, then
|
||||
#' the series is classified as 'monthly'
|
||||
#' - If the total number of sundays in the series is equal to the length of
|
||||
#' the series, then the series is classified as 'weekly
|
||||
#'
|
||||
#' @section Limitations:
|
||||
#' One of the assumptions made behind the classification is that weeks are
|
||||
#' denoted with Sundays, hence the count of sundays to measure the number of
|
||||
#' weeks. In this case, weeks where a Sunday is missing would result in an
|
||||
#' 'unable to classify' error.
|
||||
#'
|
||||
#' Another assumption made is that dates are evenly distributed, i.e. that the
|
||||
#' gap between dates are equal. If dates are unevenly distributed, e.g. only two
|
||||
#' days of the week are available for a given week, then the algorithm will fail
|
||||
#' to identify the frequency as 'daily'.
|
||||
#'
|
||||
#' @return
|
||||
#' String describing the detected date frequency, i.e.:
|
||||
#' - 'daily'
|
||||
#' - 'weekly'
|
||||
#' - 'monthly'
|
||||
#'
|
||||
#' @examples
|
||||
#' start_date <- as.Date("2022/06/26")
|
||||
#' end_date <- as.Date("2022/11/27")
|
||||
#'
|
||||
#' # Daily
|
||||
#' day_seq <-
|
||||
#' seq.Date(
|
||||
#' from = start_date,
|
||||
#' to = end_date,
|
||||
#' by = "day"
|
||||
#' )
|
||||
#'
|
||||
#' identify_datefreq(day_seq)
|
||||
#'
|
||||
#' # Weekly
|
||||
#' week_seq <-
|
||||
#' seq.Date(
|
||||
#' from = start_date,
|
||||
#' to = end_date,
|
||||
#' by = "week"
|
||||
#' )
|
||||
#'
|
||||
#' identify_datefreq(week_seq)
|
||||
#'
|
||||
#' # Monthly
|
||||
#' month_seq <-
|
||||
#' seq.Date(
|
||||
#' from = start_date,
|
||||
#' to = end_date,
|
||||
#' by = "month"
|
||||
#' )
|
||||
#' identify_datefreq(month_seq)
|
||||
#'
|
||||
#' @export
|
||||
|
||||
identify_datefreq <- function(x){
|
||||
|
||||
# Data frame for checking
|
||||
date_df <- data.frame(
|
||||
weekdays = names(table(weekdays(x))),
|
||||
n = as.numeric(table(weekdays(x)))
|
||||
)
|
||||
|
||||
|
||||
dweekchr <- c(
|
||||
"Sunday",
|
||||
"Saturday",
|
||||
"Monday",
|
||||
"Tuesday",
|
||||
"Wednesday",
|
||||
"Thursday",
|
||||
"Friday"
|
||||
)
|
||||
|
||||
# At least 3 days of the week must be present
|
||||
check_wdays <- ifelse(
|
||||
sum(dweekchr %in% date_df$weekdays) >= 3, TRUE, FALSE)
|
||||
|
||||
# Check number of Sundays - should equal number of weeks if weekly
|
||||
check_nsun <- sum(date_df$n[date_df$weekdays == "Sunday"])
|
||||
|
||||
ifelse(
|
||||
length(months(x)) == length(x),
|
||||
"monthly",
|
||||
ifelse(
|
||||
check_nsun == length(x),
|
||||
"weekly",
|
||||
ifelse(
|
||||
check_wdays,
|
||||
"daily",
|
||||
"Unable to identify date frequency."
|
||||
)
|
||||
)
|
||||
)
|
||||
}
|
|
@ -151,7 +151,7 @@ plot_flex_index <- function(data,
|
|||
)
|
||||
|
||||
## 00, 01, 02, etc.
|
||||
hours_col <- stringr::str_pad(seq(0,23), width = 2, pad = 0)
|
||||
hours_col <- pad2(x = seq(0,23))
|
||||
|
||||
# Use `mutate()` method
|
||||
# Will get 10 IDs, not 10 rows
|
||||
|
|
|
@ -22,7 +22,10 @@
|
|||
#' @param legend_text String to be used in the bottom legend label.
|
||||
#'
|
||||
#' @param rows Number of rows to show in plot.
|
||||
#' @noRd
|
||||
#' @param title String to specify plot title.
|
||||
#' @param subtitle String to specify plot subtitle.
|
||||
#' @param caption String to specify plot caption.
|
||||
#' @param ylab String to specify plot y-axis label.
|
||||
#'
|
||||
#' @export
|
||||
|
||||
|
@ -41,7 +44,7 @@ plot_hourly_pat <- function(
|
|||
){
|
||||
|
||||
## 00, 01, 02, etc.
|
||||
hours_col <- stringr::str_pad(seq(0,23), width = 2, pad = 0)
|
||||
hours_col <- pad2(x = seq(0,23))
|
||||
|
||||
data %>%
|
||||
utils::head(rows) %>%
|
||||
|
|
|
@ -251,3 +251,19 @@ wrap_text <- function(x, threshold = 15){
|
|||
x = x
|
||||
)
|
||||
}
|
||||
|
||||
#' @title
|
||||
#' Create the two-digit zero-padded format
|
||||
#'
|
||||
#' @param x numeric value or vector with maximum two characters.
|
||||
#'
|
||||
#' @return
|
||||
#' Numeric value containing two-digit zero-padded values.
|
||||
#'
|
||||
#' @export
|
||||
|
||||
pad2 <- function(x){
|
||||
x <- as.character(x)
|
||||
|
||||
ifelse(nchar(x) == 1, paste0("0", x), x)
|
||||
}
|
||||
|
|
|
@ -191,14 +191,6 @@ workpatterns_area <- function(data,
|
|||
mutate(Signals = sub(pattern = "_\\d.+", replacement = "", x = Signals)) %>%
|
||||
spread(Signals, Value)
|
||||
|
||||
## Create the two-digit zero-padded format
|
||||
## Used in `scale_x_continuous()`
|
||||
pad2 <- function(x){
|
||||
x <- as.character(x)
|
||||
|
||||
ifelse(nchar(x) == 1, paste0("0", x), x)
|
||||
}
|
||||
|
||||
## Return
|
||||
if(return == "data"){
|
||||
|
||||
|
|
|
@ -234,7 +234,8 @@ workpatterns_classify_bw <- function(data,
|
|||
WpA_classify <-
|
||||
WpA_classify[, c("PersonId", "Date", "Active_Hours", "HourType", "sent")] %>%
|
||||
.[, .(sent = sum(sent)), by = c("PersonId", "Date", "Active_Hours", "HourType")] %>%
|
||||
tidyr::spread(HourType, sent)%>%
|
||||
dplyr::as_tibble() %>%
|
||||
tidyr::spread(HourType, sent) %>%
|
||||
left_join(WpA_classify %>% ## Calculate first and last activity for day_span
|
||||
filter(sent > 0)%>%
|
||||
group_by(PersonId, Date)%>%
|
||||
|
@ -242,7 +243,8 @@ workpatterns_classify_bw <- function(data,
|
|||
Last_signal = max(End)),
|
||||
by = c("PersonId","Date"))%>%
|
||||
mutate(Day_Span = Last_signal - First_signal,
|
||||
Signals_Break_hours = Day_Span - Active_Hours)
|
||||
Signals_Break_hours = Day_Span - Active_Hours) %>%
|
||||
data.table::as.data.table()
|
||||
|
||||
|
||||
## Working patterns classification ---------------------------------------
|
||||
|
|
|
@ -295,14 +295,6 @@ plot_signal_clust <- function(data,
|
|||
mutate_at("Hours", ~sub(pattern = paste0(sig_label, "_"), replacement = "", x = .)) %>%
|
||||
mutate_at("Hours", ~sub(pattern = "_.+", replacement = "", x = .))
|
||||
|
||||
## Create the two-digit zero-padded format
|
||||
## Used in `scale_x_continuous()`
|
||||
pad2 <- function(x){
|
||||
ifelse(nchar(x) == 1,
|
||||
paste0(0, x),
|
||||
x)
|
||||
}
|
||||
|
||||
## bar plot
|
||||
output_bar <-
|
||||
plot_data %>%
|
||||
|
|
|
@ -171,7 +171,7 @@ workpatterns_rank <- function(data,
|
|||
by = num_cols]
|
||||
|
||||
## 00, 01, 02, etc.
|
||||
hours_col <- stringr::str_pad(seq(0,23), width = 2, pad = 0)
|
||||
hours_col <- pad2(x = seq(0,23))
|
||||
|
||||
# Wide table showing proportion of signals by hour
|
||||
# Ranked descending by `WeekCount`
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
# wpa <img src="https://raw.githubusercontent.com/microsoft/wpa/main/man/figures/logo2.png" align="right" width=15% />
|
||||
|
||||
[![R build status](https://github.com/microsoft/wpa/workflows/R-CMD-check/badge.svg)](https://github.com/microsoft/wpa/actions/)
|
||||
[![CodeFactor](https://www.codefactor.io/repository/github/microsoft/wpa/badge/)](https://www.codefactor.io/repository/github/microsoft/wpa/)
|
||||
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT/)
|
||||
[![lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://lifecycle.r-lib.org/articles/stages.html)
|
||||
[![CRAN status](https://www.r-pkg.org/badges/version/wpa)](https://CRAN.R-project.org/package=wpa/)
|
||||
|
@ -9,7 +8,7 @@
|
|||
|
||||
## Analyze and Visualize Viva Leader Insights data
|
||||
|
||||
This is an R package for analyzing and visualizing data from [Microsoft Viva Advanced Insights](https://docs.microsoft.com/en-us/workplace-analytics/) (previously Microsoft Workplace Analytics).
|
||||
This is an R package for analyzing and visualizing data from [Microsoft Workplace Analytics](https://docs.microsoft.com/en-us/workplace-analytics/). For analyzing data from [Microsoft Viva Insights](https://analysis.insights.viva.office.com/), please see our other package [**vivainsights**](https://microsoft.github.io/vivainsights/).
|
||||
|
||||
## With the **wpa** package, you can...
|
||||
|
||||
|
@ -63,9 +62,12 @@ See [NEWS.md](https://microsoft.github.io/wpa/news/index.html) for the package c
|
|||
|
||||
## Related repositories
|
||||
|
||||
- [Viva Insights R library - new implementation](https://microsoft.github.io/vivainsights/)
|
||||
- [Viva Insights Python library](https://github.com/microsoft/vivainsights-py/)
|
||||
- [Viva RMarkdown Report Marketplace](https://github.com/microsoft/VivaRMDReportMarketplace)
|
||||
- [Viva Insights Sample Code](https://github.com/microsoft/viva-insights-sample-code)
|
||||
- [Viva Insights Zoom Integration](https://github.com/microsoft/vivainsights_zoom_int)
|
||||
- [Viva Insights OData Query Download](https://github.com/microsoft/vivainsights-odatadl)
|
||||
|
||||
---
|
||||
|
||||
|
|
|
@ -7,6 +7,14 @@
|
|||
|
||||
0 errors | 0 warnings | 0 note
|
||||
|
||||
## Submission 1.8.1
|
||||
|
||||
Patch to fix bug due to an update in 'tidyr' dependency
|
||||
|
||||
## Submission 1.8.0
|
||||
|
||||
New functions and improving outputs of existing functions
|
||||
|
||||
## Submission 1.7.0
|
||||
|
||||
Bug fixes, new features, and removal of archived dependency 'portes'
|
||||
|
|
|
@ -139,8 +139,10 @@ Other Visualization:
|
|||
\code{\link{workpatterns_area}()},
|
||||
\code{\link{workpatterns_rank}()}
|
||||
|
||||
Other External:
|
||||
Other External Collaboration:
|
||||
\code{\link{external_fizz}()},
|
||||
\code{\link{external_line}()},
|
||||
\code{\link{external_sum}()}
|
||||
}
|
||||
\concept{External}
|
||||
\concept{External Collaboration}
|
||||
\concept{Visualization}
|
||||
|
|
|
@ -125,7 +125,9 @@ Other Visualization:
|
|||
\code{\link{workpatterns_rank}()}
|
||||
|
||||
Other External Collaboration:
|
||||
\code{\link{external_line}()}
|
||||
\code{\link{external_dist}()},
|
||||
\code{\link{external_line}()},
|
||||
\code{\link{external_sum}()}
|
||||
}
|
||||
\concept{External Collaboration}
|
||||
\concept{Visualization}
|
||||
|
|
|
@ -127,7 +127,9 @@ Other Visualization:
|
|||
\code{\link{workpatterns_rank}()}
|
||||
|
||||
Other External Collaboration:
|
||||
\code{\link{external_fizz}()}
|
||||
\code{\link{external_dist}()},
|
||||
\code{\link{external_fizz}()},
|
||||
\code{\link{external_sum}()}
|
||||
}
|
||||
\concept{External Collaboration}
|
||||
\concept{Visualization}
|
||||
|
|
|
@ -46,7 +46,7 @@ Returns a stacked bar plot of internal and external collaboration.
|
|||
Additional options available to return a summary table.
|
||||
}
|
||||
\examples{
|
||||
# Return a plot
|
||||
# Return a plot
|
||||
external_sum(sq_data, hrvar = "LevelDesignation")
|
||||
|
||||
# Return summary table
|
||||
|
@ -130,8 +130,10 @@ Other Visualization:
|
|||
\code{\link{workpatterns_area}()},
|
||||
\code{\link{workpatterns_rank}()}
|
||||
|
||||
Other External:
|
||||
\code{\link{external_dist}()}
|
||||
Other External Collaboration:
|
||||
\code{\link{external_dist}()},
|
||||
\code{\link{external_fizz}()},
|
||||
\code{\link{external_line}()}
|
||||
}
|
||||
\concept{External}
|
||||
\concept{External Collaboration}
|
||||
\concept{Visualization}
|
||||
|
|
|
@ -0,0 +1,85 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/identify_datefreq.R
|
||||
\name{identify_datefreq}
|
||||
\alias{identify_datefreq}
|
||||
\title{Identify date frequency based on a series of dates}
|
||||
\usage{
|
||||
identify_datefreq(x)
|
||||
}
|
||||
\arguments{
|
||||
\item{x}{Vector containing a series of dates.}
|
||||
}
|
||||
\value{
|
||||
String describing the detected date frequency, i.e.:
|
||||
\itemize{
|
||||
\item 'daily'
|
||||
\item 'weekly'
|
||||
\item 'monthly'
|
||||
}
|
||||
}
|
||||
\description{
|
||||
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#experimental}{\figure{lifecycle-experimental.svg}{options: alt='[Experimental]'}}}{\strong{[Experimental]}}
|
||||
|
||||
Takes a vector of dates and identify whether the frequency is 'daily',
|
||||
'weekly', or 'monthly'. The primary use case for this function is to provide
|
||||
an accurate description of the query type used and for raising errors should
|
||||
a wrong date grouping be used in the data input.
|
||||
}
|
||||
\details{
|
||||
Date frequency detection works as follows:
|
||||
\itemize{
|
||||
\item If at least three days of the week are present (e.g., Monday, Wednesday,
|
||||
Thursday) in the series, then the series is classified as 'daily'
|
||||
\item If the total number of months in the series is equal to the length, then
|
||||
the series is classified as 'monthly'
|
||||
\item If the total number of sundays in the series is equal to the length of
|
||||
the series, then the series is classified as 'weekly
|
||||
}
|
||||
}
|
||||
\section{Limitations}{
|
||||
|
||||
One of the assumptions made behind the classification is that weeks are
|
||||
denoted with Sundays, hence the count of sundays to measure the number of
|
||||
weeks. In this case, weeks where a Sunday is missing would result in an
|
||||
'unable to classify' error.
|
||||
|
||||
Another assumption made is that dates are evenly distributed, i.e. that the
|
||||
gap between dates are equal. If dates are unevenly distributed, e.g. only two
|
||||
days of the week are available for a given week, then the algorithm will fail
|
||||
to identify the frequency as 'daily'.
|
||||
}
|
||||
|
||||
\examples{
|
||||
start_date <- as.Date("2022/06/26")
|
||||
end_date <- as.Date("2022/11/27")
|
||||
|
||||
# Daily
|
||||
day_seq <-
|
||||
seq.Date(
|
||||
from = start_date,
|
||||
to = end_date,
|
||||
by = "day"
|
||||
)
|
||||
|
||||
identify_datefreq(day_seq)
|
||||
|
||||
# Weekly
|
||||
week_seq <-
|
||||
seq.Date(
|
||||
from = start_date,
|
||||
to = end_date,
|
||||
by = "week"
|
||||
)
|
||||
|
||||
identify_datefreq(week_seq)
|
||||
|
||||
# Monthly
|
||||
month_seq <-
|
||||
seq.Date(
|
||||
from = start_date,
|
||||
to = end_date,
|
||||
by = "month"
|
||||
)
|
||||
identify_datefreq(month_seq)
|
||||
|
||||
}
|
|
@ -0,0 +1,17 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/supporting_functions.R
|
||||
\name{pad2}
|
||||
\alias{pad2}
|
||||
\title{Create the two-digit zero-padded format}
|
||||
\usage{
|
||||
pad2(x)
|
||||
}
|
||||
\arguments{
|
||||
\item{x}{numeric value or vector with maximum two characters.}
|
||||
}
|
||||
\value{
|
||||
Numeric value containing two-digit zero-padded values.
|
||||
}
|
||||
\description{
|
||||
Create the two-digit zero-padded format
|
||||
}
|
|
@ -0,0 +1,56 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/plot_hourly_pat.R
|
||||
\name{plot_hourly_pat}
|
||||
\alias{plot_hourly_pat}
|
||||
\title{Internal function for plotting the hourly activity patterns.}
|
||||
\usage{
|
||||
plot_hourly_pat(
|
||||
data,
|
||||
start_hour,
|
||||
end_hour,
|
||||
legend,
|
||||
legend_label,
|
||||
legend_text = "Observed activity",
|
||||
rows,
|
||||
title,
|
||||
subtitle,
|
||||
caption,
|
||||
ylab = paste("Top", rows, "activity patterns")
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{Data frame containing three columns:
|
||||
\itemize{
|
||||
\item \code{patternRank}
|
||||
\item \code{Hours}
|
||||
\item \code{Freq}
|
||||
}}
|
||||
|
||||
\item{start_hour}{Numeric value to specify expected start hour.}
|
||||
|
||||
\item{end_hour}{Numeric value to specify expected end hour.}
|
||||
|
||||
\item{legend}{Data frame containing the columns:
|
||||
\itemize{
|
||||
\item \code{patternRank}
|
||||
\item Any column to be used in the grey label box, supplied to \code{legend_label}
|
||||
}}
|
||||
|
||||
\item{legend_label}{String specifying column to display in the grey label
|
||||
box}
|
||||
|
||||
\item{legend_text}{String to be used in the bottom legend label.}
|
||||
|
||||
\item{rows}{Number of rows to show in plot.}
|
||||
|
||||
\item{title}{String to specify plot title.}
|
||||
|
||||
\item{subtitle}{String to specify plot subtitle.}
|
||||
|
||||
\item{caption}{String to specify plot caption.}
|
||||
|
||||
\item{ylab}{String to specify plot y-axis label.}
|
||||
}
|
||||
\description{
|
||||
This is used within \code{plot_flex_index()} and \code{workpatterns_rank()}.
|
||||
}
|
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
Загрузка…
Ссылка в новой задаче