% Generated by roxygen2: do not edit by hand % Please edit documentation in R/tm_cooc.R \name{tm_cooc} \alias{tm_cooc} \title{Analyse word co-occurrence in subject lines and return a network plot} \usage{ tm_cooc(data, stopwords = NULL, seed = 100, return = "plot", lmult = 0.05) } \arguments{ \item{data}{A Meeting Query dataset in the form of a data frame.} \item{stopwords}{A single-column data frame labelled 'word' containing custom stopwords to remove.} \item{seed}{A numeric vector to set seed for random generation.} \item{return}{Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table".} \item{lmult}{A multiplier to adjust the line width in the output plot. Defaults to 0.05.} } \description{ This function generates a word co-occurence network plot, with options to return a table. This is a sub-function that feeds into \code{meeting_tm_report()}. } \details{ This function uses \code{tm_clean()} as the underlying data wrangling function. There is an option to remove stopwords by passing a data frame into the \code{stopwords} argument. } \examples{ # Demo using a subset of `mt_data` mt_data \%>\% dplyr::slice(1:20) \%>\% tm_cooc(lmult = 0.01) } \seealso{ Other Text-mining: \code{\link{meeting_tm_report}()}, \code{\link{tm_clean}()}, \code{\link{tm_freq}()}, \code{\link{tm_wordcloud}()} } \concept{Text-mining}