225 строки
8.9 KiB
Python
Executable File
225 строки
8.9 KiB
Python
Executable File
import time, logging
|
|
from datetime import datetime
|
|
import threading, collections, queue, os, os.path
|
|
import deepspeech
|
|
import numpy as np
|
|
import pyaudio
|
|
import wave
|
|
import webrtcvad
|
|
from halo import Halo
|
|
from scipy import signal
|
|
|
|
logging.basicConfig(level=20)
|
|
|
|
class Audio(object):
|
|
"""Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from."""
|
|
|
|
FORMAT = pyaudio.paInt16
|
|
# Network/VAD rate-space
|
|
RATE_PROCESS = 16000
|
|
CHANNELS = 1
|
|
BLOCKS_PER_SECOND = 50
|
|
|
|
def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS, file=None):
|
|
def proxy_callback(in_data, frame_count, time_info, status):
|
|
#pylint: disable=unused-argument
|
|
if self.chunk is not None:
|
|
in_data = self.wf.readframes(self.chunk)
|
|
callback(in_data)
|
|
return (None, pyaudio.paContinue)
|
|
if callback is None: callback = lambda in_data: self.buffer_queue.put(in_data)
|
|
self.buffer_queue = queue.Queue()
|
|
self.device = device
|
|
self.input_rate = input_rate
|
|
self.sample_rate = self.RATE_PROCESS
|
|
self.block_size = int(self.RATE_PROCESS / float(self.BLOCKS_PER_SECOND))
|
|
self.block_size_input = int(self.input_rate / float(self.BLOCKS_PER_SECOND))
|
|
self.pa = pyaudio.PyAudio()
|
|
|
|
kwargs = {
|
|
'format': self.FORMAT,
|
|
'channels': self.CHANNELS,
|
|
'rate': self.input_rate,
|
|
'input': True,
|
|
'frames_per_buffer': self.block_size_input,
|
|
'stream_callback': proxy_callback,
|
|
}
|
|
|
|
self.chunk = None
|
|
# if not default device
|
|
if self.device:
|
|
kwargs['input_device_index'] = self.device
|
|
elif file is not None:
|
|
self.chunk = 320
|
|
self.wf = wave.open(file, 'rb')
|
|
|
|
self.stream = self.pa.open(**kwargs)
|
|
self.stream.start_stream()
|
|
|
|
def resample(self, data, input_rate):
|
|
"""
|
|
Microphone may not support our native processing sampling rate, so
|
|
resample from input_rate to RATE_PROCESS here for webrtcvad and
|
|
deepspeech
|
|
|
|
Args:
|
|
data (binary): Input audio stream
|
|
input_rate (int): Input audio rate to resample from
|
|
"""
|
|
data16 = np.fromstring(string=data, dtype=np.int16)
|
|
resample_size = int(len(data16) / self.input_rate * self.RATE_PROCESS)
|
|
resample = signal.resample(data16, resample_size)
|
|
resample16 = np.array(resample, dtype=np.int16)
|
|
return resample16.tostring()
|
|
|
|
def read_resampled(self):
|
|
"""Return a block of audio data resampled to 16000hz, blocking if necessary."""
|
|
return self.resample(data=self.buffer_queue.get(),
|
|
input_rate=self.input_rate)
|
|
|
|
def read(self):
|
|
"""Return a block of audio data, blocking if necessary."""
|
|
return self.buffer_queue.get()
|
|
|
|
def destroy(self):
|
|
self.stream.stop_stream()
|
|
self.stream.close()
|
|
self.pa.terminate()
|
|
|
|
frame_duration_ms = property(lambda self: 1000 * self.block_size // self.sample_rate)
|
|
|
|
def write_wav(self, filename, data):
|
|
logging.info("write wav %s", filename)
|
|
wf = wave.open(filename, 'wb')
|
|
wf.setnchannels(self.CHANNELS)
|
|
# wf.setsampwidth(self.pa.get_sample_size(FORMAT))
|
|
assert self.FORMAT == pyaudio.paInt16
|
|
wf.setsampwidth(2)
|
|
wf.setframerate(self.sample_rate)
|
|
wf.writeframes(data)
|
|
wf.close()
|
|
|
|
|
|
class VADAudio(Audio):
|
|
"""Filter & segment audio with voice activity detection."""
|
|
|
|
def __init__(self, aggressiveness=3, device=None, input_rate=None, file=None):
|
|
super().__init__(device=device, input_rate=input_rate, file=file)
|
|
self.vad = webrtcvad.Vad(aggressiveness)
|
|
|
|
def frame_generator(self):
|
|
"""Generator that yields all audio frames from microphone."""
|
|
if self.input_rate == self.RATE_PROCESS:
|
|
while True:
|
|
yield self.read()
|
|
else:
|
|
while True:
|
|
yield self.read_resampled()
|
|
|
|
def vad_collector(self, padding_ms=300, ratio=0.75, frames=None):
|
|
"""Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None.
|
|
Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered.
|
|
Example: (frame, ..., frame, None, frame, ..., frame, None, ...)
|
|
|---utterence---| |---utterence---|
|
|
"""
|
|
if frames is None: frames = self.frame_generator()
|
|
num_padding_frames = padding_ms // self.frame_duration_ms
|
|
ring_buffer = collections.deque(maxlen=num_padding_frames)
|
|
triggered = False
|
|
|
|
for frame in frames:
|
|
if len(frame) < 640:
|
|
return
|
|
|
|
is_speech = self.vad.is_speech(frame, self.sample_rate)
|
|
|
|
if not triggered:
|
|
ring_buffer.append((frame, is_speech))
|
|
num_voiced = len([f for f, speech in ring_buffer if speech])
|
|
if num_voiced > ratio * ring_buffer.maxlen:
|
|
triggered = True
|
|
for f, s in ring_buffer:
|
|
yield f
|
|
ring_buffer.clear()
|
|
|
|
else:
|
|
yield frame
|
|
ring_buffer.append((frame, is_speech))
|
|
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
|
|
if num_unvoiced > ratio * ring_buffer.maxlen:
|
|
triggered = False
|
|
yield None
|
|
ring_buffer.clear()
|
|
|
|
def main(ARGS):
|
|
# Load DeepSpeech model
|
|
if os.path.isdir(ARGS.model):
|
|
model_dir = ARGS.model
|
|
ARGS.model = os.path.join(model_dir, 'output_graph.pb')
|
|
ARGS.scorer = os.path.join(model_dir, ARGS.scorer)
|
|
|
|
print('Initializing model...')
|
|
logging.info("ARGS.model: %s", ARGS.model)
|
|
model = deepspeech.Model(ARGS.model)
|
|
if ARGS.scorer:
|
|
logging.info("ARGS.scorer: %s", ARGS.scorer)
|
|
model.enableExternalScorer(ARGS.scorer)
|
|
|
|
# Start audio with VAD
|
|
vad_audio = VADAudio(aggressiveness=ARGS.vad_aggressiveness,
|
|
device=ARGS.device,
|
|
input_rate=ARGS.rate,
|
|
file=ARGS.file)
|
|
print("Listening (ctrl-C to exit)...")
|
|
frames = vad_audio.vad_collector()
|
|
|
|
# Stream from microphone to DeepSpeech using VAD
|
|
spinner = None
|
|
if not ARGS.nospinner:
|
|
spinner = Halo(spinner='line')
|
|
stream_context = model.createStream()
|
|
wav_data = bytearray()
|
|
for frame in frames:
|
|
if frame is not None:
|
|
if spinner: spinner.start()
|
|
logging.debug("streaming frame")
|
|
stream_context.feedAudioContent(np.frombuffer(frame, np.int16))
|
|
if ARGS.savewav: wav_data.extend(frame)
|
|
else:
|
|
if spinner: spinner.stop()
|
|
logging.debug("end utterence")
|
|
if ARGS.savewav:
|
|
vad_audio.write_wav(os.path.join(ARGS.savewav, datetime.now().strftime("savewav_%Y-%m-%d_%H-%M-%S_%f.wav")), wav_data)
|
|
wav_data = bytearray()
|
|
text = stream_context.finishStream()
|
|
print("Recognized: %s" % text)
|
|
stream_context = model.createStream()
|
|
|
|
if __name__ == '__main__':
|
|
DEFAULT_SAMPLE_RATE = 16000
|
|
|
|
import argparse
|
|
parser = argparse.ArgumentParser(description="Stream from microphone to DeepSpeech using VAD")
|
|
|
|
parser.add_argument('-v', '--vad_aggressiveness', type=int, default=3,
|
|
help="Set aggressiveness of VAD: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 3")
|
|
parser.add_argument('--nospinner', action='store_true',
|
|
help="Disable spinner")
|
|
parser.add_argument('-w', '--savewav',
|
|
help="Save .wav files of utterences to given directory")
|
|
parser.add_argument('-f', '--file',
|
|
help="Read from .wav file instead of microphone")
|
|
|
|
parser.add_argument('-m', '--model', required=True,
|
|
help="Path to the model (protocol buffer binary file, or entire directory containing all standard-named files for model)")
|
|
parser.add_argument('-s', '--scorer',
|
|
help="Path to the external scorer file.")
|
|
parser.add_argument('-d', '--device', type=int, default=None,
|
|
help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().")
|
|
parser.add_argument('-r', '--rate', type=int, default=DEFAULT_SAMPLE_RATE,
|
|
help=f"Input device sample rate. Default: {DEFAULT_SAMPLE_RATE}. Your device may require 44100.")
|
|
|
|
ARGS = parser.parse_args()
|
|
if ARGS.savewav: os.makedirs(ARGS.savewav, exist_ok=True)
|
|
main(ARGS)
|