DeepSpeech/bin/import_librivox.py

184 строки
8.1 KiB
Python
Исходник Обычный вид История

#!/usr/bin/env python
from __future__ import absolute_import, division, print_function
# Make sure we can import stuff from util/
# This script needs to be run from the root of the DeepSpeech repository
import sys
import os
2017-04-09 22:49:51 +03:00
sys.path.insert(1, os.path.join(sys.path[0], '..'))
import codecs
import fnmatch
import pandas
import progressbar
import subprocess
import tarfile
import unicodedata
from sox import Transformer
from util.downloader import maybe_download
from tensorflow.python.platform import gfile
SAMPLE_RATE = 16000
def _download_and_preprocess_data(data_dir):
# Conditionally download data to data_dir
print("Downloading Librivox data set (55GB) into {} if not already present...".format(data_dir))
with progressbar.ProgressBar(max_value=7, widget=progressbar.AdaptiveETA) as bar:
TRAIN_CLEAN_100_URL = "http://www.openslr.org/resources/12/train-clean-100.tar.gz"
TRAIN_CLEAN_360_URL = "http://www.openslr.org/resources/12/train-clean-360.tar.gz"
TRAIN_OTHER_500_URL = "http://www.openslr.org/resources/12/train-other-500.tar.gz"
DEV_CLEAN_URL = "http://www.openslr.org/resources/12/dev-clean.tar.gz"
DEV_OTHER_URL = "http://www.openslr.org/resources/12/dev-other.tar.gz"
TEST_CLEAN_URL = "http://www.openslr.org/resources/12/test-clean.tar.gz"
TEST_OTHER_URL = "http://www.openslr.org/resources/12/test-other.tar.gz"
def filename_of(x): return os.path.split(x)[1]
train_clean_100 = maybe_download(filename_of(TRAIN_CLEAN_100_URL), data_dir, TRAIN_CLEAN_100_URL)
bar.update(0)
train_clean_360 = maybe_download(filename_of(TRAIN_CLEAN_360_URL), data_dir, TRAIN_CLEAN_360_URL)
bar.update(1)
train_other_500 = maybe_download(filename_of(TRAIN_OTHER_500_URL), data_dir, TRAIN_OTHER_500_URL)
bar.update(2)
dev_clean = maybe_download(filename_of(DEV_CLEAN_URL), data_dir, DEV_CLEAN_URL)
bar.update(3)
dev_other = maybe_download(filename_of(DEV_OTHER_URL), data_dir, DEV_OTHER_URL)
bar.update(4)
test_clean = maybe_download(filename_of(TEST_CLEAN_URL), data_dir, TEST_CLEAN_URL)
bar.update(5)
test_other = maybe_download(filename_of(TEST_OTHER_URL), data_dir, TEST_OTHER_URL)
bar.update(6)
# Conditionally extract LibriSpeech data
# We extract each archive into data_dir, but test for existence in
# data_dir/LibriSpeech because the archives share that root.
print("Extracting librivox data if not already extracted...")
with progressbar.ProgressBar(max_value=7, widget=progressbar.AdaptiveETA) as bar:
LIBRIVOX_DIR = "LibriSpeech"
work_dir = os.path.join(data_dir, LIBRIVOX_DIR)
_maybe_extract(data_dir, os.path.join(LIBRIVOX_DIR, "train-clean-100"), train_clean_100)
bar.update(0)
_maybe_extract(data_dir, os.path.join(LIBRIVOX_DIR, "train-clean-360"), train_clean_360)
bar.update(1)
_maybe_extract(data_dir, os.path.join(LIBRIVOX_DIR, "train-other-500"), train_other_500)
bar.update(2)
_maybe_extract(data_dir, os.path.join(LIBRIVOX_DIR, "dev-clean"), dev_clean)
bar.update(3)
_maybe_extract(data_dir, os.path.join(LIBRIVOX_DIR, "dev-other"), dev_other)
bar.update(4)
_maybe_extract(data_dir, os.path.join(LIBRIVOX_DIR, "test-clean"), test_clean)
bar.update(5)
_maybe_extract(data_dir, os.path.join(LIBRIVOX_DIR, "test-other"), test_other)
bar.update(6)
# Convert FLAC data to wav, from:
# data_dir/LibriSpeech/split/1/2/1-2-3.flac
# to:
# data_dir/LibriSpeech/split-wav/1-2-3.wav
#
# And split LibriSpeech transcriptions, from:
# data_dir/LibriSpeech/split/1/2/1-2.trans.txt
# to:
# data_dir/LibriSpeech/split-wav/1-2-0.txt
# data_dir/LibriSpeech/split-wav/1-2-1.txt
# data_dir/LibriSpeech/split-wav/1-2-2.txt
# ...
print("Converting FLAC to WAV and splitting transcriptions...")
with progressbar.ProgressBar(max_value=7, widget=progressbar.AdaptiveETA) as bar:
train_100 = _convert_audio_and_split_sentences(work_dir, "train-clean-100", "train-clean-100-wav")
bar.update(0)
train_360 = _convert_audio_and_split_sentences(work_dir, "train-clean-360", "train-clean-360-wav")
bar.update(1)
train_500 = _convert_audio_and_split_sentences(work_dir, "train-other-500", "train-other-500-wav")
bar.update(2)
dev_clean = _convert_audio_and_split_sentences(work_dir, "dev-clean", "dev-clean-wav")
bar.update(3)
dev_other = _convert_audio_and_split_sentences(work_dir, "dev-other", "dev-other-wav")
bar.update(4)
test_clean = _convert_audio_and_split_sentences(work_dir, "test-clean", "test-clean-wav")
bar.update(5)
test_other = _convert_audio_and_split_sentences(work_dir, "test-other", "test-other-wav")
bar.update(6)
# Write sets to disk as CSV files
train_100.to_csv(os.path.join(data_dir, "librivox-train-clean-100.csv"), index=False)
train_360.to_csv(os.path.join(data_dir, "librivox-train-clean-360.csv"), index=False)
train_500.to_csv(os.path.join(data_dir, "librivox-train-other-500.csv"), index=False)
dev_clean.to_csv(os.path.join(data_dir, "librivox-dev-clean.csv"), index=False)
dev_other.to_csv(os.path.join(data_dir, "librivox-dev-other.csv"), index=False)
test_clean.to_csv(os.path.join(data_dir, "librivox-test-clean.csv"), index=False)
test_other.to_csv(os.path.join(data_dir, "librivox-test-other.csv"), index=False)
def _maybe_extract(data_dir, extracted_data, archive):
# If data_dir/extracted_data does not exist, extract archive in data_dir
if not gfile.Exists(os.path.join(data_dir, extracted_data)):
tar = tarfile.open(archive)
tar.extractall(data_dir)
tar.close()
def _convert_audio_and_split_sentences(extracted_dir, data_set, dest_dir):
source_dir = os.path.join(extracted_dir, data_set)
target_dir = os.path.join(extracted_dir, dest_dir)
if not os.path.exists(target_dir):
os.makedirs(target_dir)
# Loop over transcription files and split each one
#
# The format for each file 1-2.trans.txt is:
# 1-2-0 transcription of 1-2-0.flac
# 1-2-1 transcription of 1-2-1.flac
# ...
#
# Each file is then split into several files:
# 1-2-0.txt (contains transcription of 1-2-0.flac)
# 1-2-1.txt (contains transcription of 1-2-1.flac)
# ...
#
# We also convert the corresponding FLACs to WAV in the same pass
files = []
for root, dirnames, filenames in os.walk(source_dir):
for filename in fnmatch.filter(filenames, '*.trans.txt'):
trans_filename = os.path.join(root, filename)
with codecs.open(trans_filename, "r", "utf-8") as fin:
for line in fin:
# Parse each segment line
first_space = line.find(" ")
seqid, transcript = line[:first_space], line[first_space+1:]
# We need to do the encode-decode dance here because encode
# returns a bytes() object on Python 3, and text_to_char_array
# expects a string.
transcript = unicodedata.normalize("NFKD", transcript) \
.encode("ascii", "ignore") \
.decode("ascii", "ignore")
transcript = transcript.lower().strip()
# Convert corresponding FLAC to a WAV
flac_file = os.path.join(root, seqid + ".flac")
wav_file = os.path.join(target_dir, seqid + ".wav")
if not os.path.exists(wav_file):
tfm = Transformer()
tfm.set_output_format(rate=SAMPLE_RATE)
tfm.build(flac_file, wav_file)
wav_filesize = os.path.getsize(wav_file)
files.append((os.path.abspath(wav_file), wav_filesize, transcript))
return pandas.DataFrame(data=files, columns=["wav_filename", "wav_filesize", "transcript"])
if __name__ == "__main__":
_download_and_preprocess_data(sys.argv[1])