remove debugging leftover, add UNSUPPORTED note, just skip invertible error

This commit is contained in:
Yi-Hua Chiu 2020-01-03 10:32:02 +08:00
Родитель c570cb670a
Коммит 4133e620bd
3 изменённых файлов: 8 добавлений и 23 удалений

Просмотреть файл

@ -595,23 +595,13 @@ def train():
# Batch loop
while True:
try:
try:
_, current_step, batch_loss, problem_files, step_summary = \
session.run([train_op, global_step, loss, non_finite_files, step_summaries_op],
feed_dict=feed_dict)
except errors_impl.InvalidArgumentError as err:
if FLAGS.augmentation_sparse_warp:
# recover twice for sparse warp, if still error, abort it!!!
try:
print('recovering the invertible error: {}'.format(err))
_, current_step, batch_loss, problem_files, step_summary = \
session.run([train_op, global_step, loss, non_finite_files, step_summaries_op],
feed_dict=feed_dict)
except errors_impl.InvalidArgumentError as err:
print('recovering the invertible error `AGAIN`: {}'.format(err))
_, current_step, batch_loss, problem_files, step_summary = \
session.run([train_op, global_step, loss, non_finite_files, step_summaries_op],
feed_dict=feed_dict)
_, current_step, batch_loss, problem_files, step_summary = \
session.run([train_op, global_step, loss, non_finite_files, step_summaries_op],
feed_dict=feed_dict)
except tf.errors.InvalidArgumentError as err:
if FLAGS.augmentation_sparse_warp:
log_info("skip sparse warp error: {}".format(err))
continue
except tf.errors.OutOfRangeError:
break

Просмотреть файл

@ -29,7 +29,7 @@ def create_flags():
f.DEFINE_float('augmentation_spec_dropout_keeprate', 1, 'keep rate of dropout augmentation on spectrogram (if 1, no dropout will be performed on spectrogram)')
f.DEFINE_boolean('augmentation_sparse_warp', False, 'whether to use spectrogram sparse warp')
f.DEFINE_boolean('augmentation_sparse_warp', False, 'whether to use spectrogram sparse warp. USE OF THIS FLAG IS UNSUPPORTED, enable sparse warp will increase training time drastically, and the paper also mentioned that this is not a major factor to improve accuracy.')
f.DEFINE_integer('augmentation_sparse_warp_num_control_points', 1, 'specify number of control points')
f.DEFINE_integer('augmentation_sparse_warp_time_warping_para', 20, 'time_warping_para')
f.DEFINE_integer('augmentation_sparse_warp_interpolation_order', 2, 'sparse_warp_interpolation_order')

Просмотреть файл

@ -117,11 +117,6 @@ def augment_sparse_warp(spectrogram, time_warping_para=20, interpolation_order=2
source_control_point_locations = tf.cast([sources], tf.float32)
dest_control_point_locations = tf.cast([dests], tf.float32)
# debug
# spectrogram = tf.Print(spectrogram, [tf.shape(spectrogram)], message='spectrogram', first_n=1000)
# spectrogram = tf.Print(spectrogram, sources, message='sources', first_n=1000)
# spectrogram = tf.Print(spectrogram, dests, message='dests', first_n=1000)
warped_spectrogram, _ = sparse_image_warp(spectrogram,
source_control_point_locations=source_control_point_locations,
dest_control_point_locations=dest_control_point_locations,