Add importer for Free ST Chinese Mandarin Corpus

This commit is contained in:
Reuben Morais 2019-06-09 17:58:03 -03:00
Родитель ee78d471a2
Коммит 67a769e0d7
1 изменённых файлов: 96 добавлений и 0 удалений

96
bin/import_freestmandarin.py Executable file
Просмотреть файл

@ -0,0 +1,96 @@
#!/usr/bin/env python
from __future__ import absolute_import, division, print_function
# Make sure we can import stuff from util/
# This script needs to be run from the root of the DeepSpeech repository
import os
import sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))
import argparse
import glob
import numpy as np
import pandas
import tarfile
COLUMN_NAMES = ['wav_filename', 'wav_filesize', 'transcript']
def extract(archive_path, target_dir):
print('Extracting {} into {}...'.format(archive_path, target_dir))
with tarfile.open(archive_path) as tar:
tar.extractall(target_dir)
def preprocess_data(tgz_file, target_dir):
# First extract main archive and sub-archives
extract(tgz_file, target_dir)
main_folder = os.path.join(target_dir, 'ST-CMDS-20170001_1-OS')
# Folder structure is now:
# - ST-CMDS-20170001_1-OS/
# - *.wav
# - *.txt
# - *.metadata
def load_set(glob_path):
set_files = []
for wav in glob.glob(glob_path):
wav_filename = wav
wav_filesize = os.path.getsize(wav)
txt_filename = os.path.splitext(wav_filename)[0] + '.txt'
with open(txt_filename, 'r') as fin:
transcript = fin.read()
set_files.append((wav_filename, wav_filesize, transcript))
return set_files
# Load all files, then deterministically split into train/dev/test sets
all_files = load_set(os.path.join(main_folder, '*.wav'))
df = pandas.DataFrame(data=all_files, columns=COLUMN_NAMES)
df.sort_values(by='wav_filename', inplace=True)
indices = np.arange(0, len(df))
np.random.seed(12345)
np.random.shuffle(indices)
# Total corpus size: 102600 samples. 5000 samples gives us 99% confidence
# level with a margin of error of under 2%.
test_indices = indices[-5000:]
dev_indices = indices[-10000:-5000]
train_indices = indices[:-10000]
train_files = df.iloc[train_indices]
durations = (train_files['wav_filesize'] - 44) / 16000 / 2
train_files = train_files[durations <= 10.0]
print('Trimming {} samples > 10 seconds'.format((durations > 10.0).sum()))
dest_csv = os.path.join(target_dir, 'freestmandarin_train.csv')
print('Saving train set into {}...'.format(dest_csv))
train_files.to_csv(dest_csv, index=False)
dev_files = df.iloc[dev_indices]
dest_csv = os.path.join(target_dir, 'freestmandarin_dev.csv')
print('Saving dev set into {}...'.format(dest_csv))
dev_files.to_csv(dest_csv, index=False)
test_files = df.iloc[test_indices]
dest_csv = os.path.join(target_dir, 'freestmandarin_test.csv')
print('Saving test set into {}...'.format(dest_csv))
test_files.to_csv(dest_csv, index=False)
def main():
# https://www.openslr.org/38/
parser = argparse.ArgumentParser(description='Import Free ST Chinese Mandarin corpus')
parser.add_argument('tgz_file', help='Path to ST-CMDS-20170001_1-OS.tar.gz')
parser.add_argument('--target_dir', default='', help='Target folder to extract files into and put the resulting CSVs. Defaults to same folder as the main archive.')
params = parser.parse_args()
if not params.target_dir:
params.target_dir = os.path.dirname(params.tgz_file)
preprocess_data(params.tgz_file, params.target_dir)
if __name__ == "__main__":
main()