#!/bin/sh set -xe ldc93s1_dir="./data/smoke_test" ldc93s1_csv="${ldc93s1_dir}/ldc93s1.csv" if [ ! -f "${ldc93s1_dir}/ldc93s1.csv" ]; then echo "Downloading and preprocessing LDC93S1 example data, saving in ${ldc93s1_dir}." python -u bin/import_ldc93s1.py ${ldc93s1_dir} fi; # Force only one visible device because we have a single-sample dataset # and when trying to run on multiple devices (like GPUs), this will break export CUDA_VISIBLE_DEVICES=0 python -u DeepSpeech.py --noshow_progressbar --noearly_stop \ --train_files ${ldc93s1_csv} --train_batch_size 1 \ --dev_files ${ldc93s1_csv} --dev_batch_size 1 \ --test_files ${ldc93s1_csv} --test_batch_size 1 \ --n_hidden 100 --epochs 1 \ --max_to_keep 1 --checkpoint_dir '/tmp/ckpt_bytes' --bytes_output_mode \ --learning_rate 0.001 --dropout_rate 0.05 \ --scorer_path 'data/smoke_test/pruned_lm.bytes.scorer' | tee /tmp/resume.log if ! grep "Loading best validating checkpoint from" /tmp/resume.log; then echo "Did not resume training from checkpoint" exit 1 else exit 0 fi