DeepSpeech/taskcluster/tf_tc-vars.sh

214 строки
9.0 KiB
Bash
Executable File

#!/bin/bash
set -ex
export OS=$(uname)
if [ "${OS}" = "Linux" ]; then
export DS_ROOT_TASK=$(/usr/bin/realpath "${HOME}")
BAZEL_URL=https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-installer-linux-x86_64.sh
BAZEL_SHA256=7ba815cbac712d061fe728fef958651512ff394b2708e89f79586ec93d1185ed
CUDA_URL=http://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.243_418.87.00_linux.run
CUDA_SHA256=e7c22dc21278eb1b82f34a60ad7640b41ad3943d929bebda3008b72536855d31
# From https://gitlab.com/nvidia/cuda/blob/centos7/10.1/devel/cudnn7/Dockerfile
CUDNN_URL=http://developer.download.nvidia.com/compute/redist/cudnn/v7.6.0/cudnn-10.1-linux-x64-v7.6.0.64.tgz
CUDNN_SHA256=e956c6f9222fcb867a10449cfc76dee5cfd7c7531021d95fe9586d7e043b57d7
ANDROID_NDK_URL=https://dl.google.com/android/repository/android-ndk-r18b-linux-x86_64.zip
ANDROID_NDK_SHA256=4f61cbe4bbf6406aa5ef2ae871def78010eed6271af72de83f8bd0b07a9fd3fd
ANDROID_SDK_URL=https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
ANDROID_SDK_SHA256=92ffee5a1d98d856634e8b71132e8a95d96c83a63fde1099be3d86df3106def9
SHA_SUM="sha256sum -c --strict"
WGET=/usr/bin/wget
TAR=tar
XZ="pixz -9"
elif [ "${OS}" = "${TC_MSYS_VERSION}" ]; then
if [ -z "${TASKCLUSTER_TASK_DIR}" -o -z "${TASKCLUSTER_ARTIFACTS}" ]; then
echo "Inconsistent Windows setup: missing some vars."
echo "TASKCLUSTER_TASK_DIR=${TASKCLUSTER_TASK_DIR}"
echo "TASKCLUSTER_ARTIFACTS=${TASKCLUSTER_ARTIFACTS}"
exit 1
fi;
# Re-export with cygpath to make sure it is sane, otherwise it might trigger
# unobvious failures with cp etc.
export TASKCLUSTER_TASK_DIR="$(cygpath ${TASKCLUSTER_TASK_DIR})"
export TASKCLUSTER_ARTIFACTS="$(cygpath ${TASKCLUSTER_ARTIFACTS})"
export DS_ROOT_TASK=${TASKCLUSTER_TASK_DIR}
export BAZEL_VC='C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC'
export BAZEL_SH='C:\builds\tc-workdir\msys64\usr\bin\bash'
export TC_WIN_BUILD_PATH='C:\builds\tc-workdir\msys64\usr\bin;C:\Python36'
export MSYS2_ARG_CONV_EXCL='//'
mkdir -p ${TASKCLUSTER_TASK_DIR}/tmp/
export TEMP=${TASKCLUSTER_TASK_DIR}/tmp/
export TMP=${TASKCLUSTER_TASK_DIR}/tmp/
BAZEL_URL=https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-windows-x86_64.exe
BAZEL_SHA256=776db1f4986dacc3eda143932f00f7529f9ee65c7c1c004414c44aaa6419d0e9
CUDA_INSTALL_DIRECTORY=$(cygpath 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1')
SHA_SUM="sha256sum -c --strict"
WGET=wget
TAR=/usr/bin/tar.exe
XZ="xz -9 -T0"
elif [ "${OS}" = "Darwin" ]; then
if [ -z "${TASKCLUSTER_TASK_DIR}" -o -z "${TASKCLUSTER_ARTIFACTS}" ]; then
echo "Inconsistent OSX setup: missing some vars."
echo "TASKCLUSTER_TASK_DIR=${TASKCLUSTER_TASK_DIR}"
echo "TASKCLUSTER_ARTIFACTS=${TASKCLUSTER_ARTIFACTS}"
exit 1
fi;
export DS_ROOT_TASK=${TASKCLUSTER_TASK_DIR}
BAZEL_URL=https://github.com/bazelbuild/bazel/releases/download/3.1.0/bazel-3.1.0-installer-darwin-x86_64.sh
BAZEL_SHA256=5cfa97031b43432b3c742c80e2e01c41c0acdca7ba1052fc8cf1e291271bc9cd
SHA_SUM="shasum -a 256 -c"
WGET=wget
TAR=gtar
XZ="xz -9 -T0"
fi;
# /tmp/artifacts for docker-worker on linux,
# and task subdir for generic-worker on osx
export TASKCLUSTER_ARTIFACTS=${TASKCLUSTER_ARTIFACTS:-/tmp/artifacts}
### Define variables that needs to be exported to other processes
PATH=${DS_ROOT_TASK}/bin:$PATH
if [ "${OS}" = "Darwin" ]; then
PATH=${DS_ROOT_TASK}/homebrew/bin/:${DS_ROOT_TASK}/homebrew/opt/node@10/bin:$PATH
fi;
export PATH
if [ "${OS}" = "Linux" ]; then
export LD_LIBRARY_PATH=${DS_ROOT_TASK}/DeepSpeech/CUDA/lib64/:${DS_ROOT_TASK}/DeepSpeech/CUDA/lib64/stubs/:$LD_LIBRARY_PATH
export ANDROID_SDK_HOME=${DS_ROOT_TASK}/DeepSpeech/Android/SDK/
export ANDROID_NDK_HOME=${DS_ROOT_TASK}/DeepSpeech/Android/android-ndk-r18b/
fi;
export TF_ENABLE_XLA=0
if [ "${OS}" = "Linux" ]; then
TF_NEED_JEMALLOC=1
elif [ "${OS}" = "${TC_MSYS_VERSION}" ]; then
TF_NEED_JEMALLOC=0
elif [ "${OS}" = "Darwin" ]; then
TF_NEED_JEMALLOC=0
fi;
export TF_NEED_JEMALLOC
export TF_NEED_OPENCL_SYCL=0
export TF_NEED_MKL=0
export TF_NEED_VERBS=0
export TF_NEED_MPI=0
export TF_NEED_IGNITE=0
export TF_NEED_GDR=0
export TF_NEED_NGRAPH=0
export TF_DOWNLOAD_CLANG=0
export TF_SET_ANDROID_WORKSPACE=0
export TF_NEED_TENSORRT=0
export TF_NEED_ROCM=0
# This should be gcc-5, hopefully. CUDA and TensorFlow might not be happy, otherwise.
export GCC_HOST_COMPILER_PATH=/usr/bin/gcc
if [ "${OS}" = "${TC_MSYS_VERSION}" ]; then
export PYTHON_BIN_PATH=C:/Python36/python.exe
else
if [ "${OS}" = "Linux" ]; then
source /etc/os-release
if [ "${ID}" = "ubuntu" -a "${VERSION_ID}" = "20.04" ]; then
export PYTHON_BIN_PATH=/usr/bin/python3
else
export PYTHON_BIN_PATH=/usr/bin/python2.7
fi
else
export PYTHON_BIN_PATH=/usr/bin/python2.7
fi
fi
## Below, define or export some build variables
# Enable some SIMD support. Limit ourselves to what Tensorflow needs.
# Also ensure to not require too recent CPU: AVX2/FMA introduced by:
# - Intel with Haswell (2013)
# - AMD with Excavator (2015)
# For better compatibility, AVX ony might be better.
#
# Build for generic amd64 platforms, no device-specific optimization
# See https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html for targetting specific CPUs
if [ "${OS}" = "${TC_MSYS_VERSION}" ]; then
OPT_FLAGS="/arch:AVX"
else
OPT_FLAGS="-mtune=generic -march=x86-64 -msse -msse2 -msse3 -msse4.1 -msse4.2 -mavx"
fi
BAZEL_OPT_FLAGS=""
for flag in ${OPT_FLAGS};
do
BAZEL_OPT_FLAGS="${BAZEL_OPT_FLAGS} --copt=${flag}"
done;
BAZEL_OUTPUT_CACHE_DIR="${DS_ROOT_TASK}/.bazel_cache/"
BAZEL_OUTPUT_CACHE_INSTANCE="${BAZEL_OUTPUT_CACHE_DIR}/output/"
mkdir -p ${BAZEL_OUTPUT_CACHE_INSTANCE} || true
# We need both to ensure stable path ; default value for output_base is some
# MD5 value.
BAZEL_OUTPUT_USER_ROOT="--output_user_root ${BAZEL_OUTPUT_CACHE_DIR} --output_base ${BAZEL_OUTPUT_CACHE_INSTANCE}"
export BAZEL_OUTPUT_USER_ROOT
NVCC_COMPUTE="3.5"
### Define build parameters/env variables that we will re-ues in sourcing scripts.
if [ "${OS}" = "${TC_MSYS_VERSION}" ]; then
TF_CUDA_FLAGS="TF_CUDA_CLANG=0 TF_CUDA_VERSION=10.1 TF_CUDNN_VERSION=7.6.0 CUDNN_INSTALL_PATH=\"${CUDA_INSTALL_DIRECTORY}\" TF_CUDA_PATHS=\"${CUDA_INSTALL_DIRECTORY}\" TF_CUDA_COMPUTE_CAPABILITIES=\"${NVCC_COMPUTE}\""
else
TF_CUDA_FLAGS="TF_CUDA_CLANG=0 TF_CUDA_VERSION=10.1 TF_CUDNN_VERSION=7.6.0 CUDNN_INSTALL_PATH=\"${DS_ROOT_TASK}/DeepSpeech/CUDA\" TF_CUDA_PATHS=\"${DS_ROOT_TASK}/DeepSpeech/CUDA\" TF_CUDA_COMPUTE_CAPABILITIES=\"${NVCC_COMPUTE}\""
fi
BAZEL_ARM_FLAGS="--config=rpi3 --config=rpi3_opt --copt=-DTFLITE_WITH_RUY_GEMV"
BAZEL_ARM64_FLAGS="--config=rpi3-armv8 --config=rpi3-armv8_opt --copt=-DTFLITE_WITH_RUY_GEMV"
BAZEL_ANDROID_ARM_FLAGS="--config=android --config=android_arm --action_env ANDROID_NDK_API_LEVEL=21 --cxxopt=-std=c++14 --copt=-D_GLIBCXX_USE_C99 --copt=-DTFLITE_WITH_RUY_GEMV"
BAZEL_ANDROID_ARM64_FLAGS="--config=android --config=android_arm64 --action_env ANDROID_NDK_API_LEVEL=21 --cxxopt=-std=c++14 --copt=-D_GLIBCXX_USE_C99 --copt=-DTFLITE_WITH_RUY_GEMV"
BAZEL_CUDA_FLAGS="--config=cuda"
if [ "${OS}" = "Linux" ]; then
# constexpr usage in tensorflow's absl dep fails badly because of gcc-5
# so let's skip that
BAZEL_CUDA_FLAGS="${BAZEL_CUDA_FLAGS} --copt=-DNO_CONSTEXPR_FOR_YOU=1"
fi
BAZEL_IOS_ARM64_FLAGS="--config=ios_arm64 --define=runtime=tflite --copt=-DTFLITE_WITH_RUY_GEMV"
BAZEL_IOS_X86_64_FLAGS="--config=ios_x86_64 --define=runtime=tflite --copt=-DTFLITE_WITH_RUY_GEMV"
if [ "${OS}" = "${TC_MSYS_VERSION}" ]; then
# Somehow, even with Python being in the PATH, Bazel on windows struggles
# with '/usr/bin/env python' ...
#
# We also force TMP/TEMP otherwise Bazel will pick default Windows one
# under %USERPROFILE%\AppData\Local\Temp and with 8.3 file format convention
# it messes with cxx_builtin_include_directory
BAZEL_EXTRA_FLAGS="--action_env=PATH=${TC_WIN_BUILD_PATH} --action_env=TEMP=${TEMP} --action_env=TMP=${TMP}"
else
BAZEL_EXTRA_FLAGS="--config=noaws --config=nogcp --config=nohdfs --config=nonccl --copt=-fvisibility=hidden"
fi
if [ "${OS}" = "Darwin" ]; then
BAZEL_EXTRA_FLAGS="${BAZEL_EXTRA_FLAGS} --macos_minimum_os 10.10 --macos_sdk_version 10.15"
fi
### Define build targets that we will re-ues in sourcing scripts.
BUILD_TARGET_LIB_CPP_API="//tensorflow:tensorflow_cc"
BUILD_TARGET_GRAPH_TRANSFORMS="//tensorflow/tools/graph_transforms:transform_graph"
BUILD_TARGET_GRAPH_SUMMARIZE="//tensorflow/tools/graph_transforms:summarize_graph"
BUILD_TARGET_GRAPH_BENCHMARK="//tensorflow/tools/benchmark:benchmark_model"
#BUILD_TARGET_CONVERT_MMAP="//tensorflow/contrib/util:convert_graphdef_memmapped_format"
BUILD_TARGET_TOCO="//tensorflow/lite/toco:toco"
BUILD_TARGET_LITE_BENCHMARK="//tensorflow/lite/tools/benchmark:benchmark_model"
BUILD_TARGET_LITE_LIB="//tensorflow/lite/c:libtensorflowlite_c.so"