DeepSpeech/training/deepspeech_training/util/checkpoints.py

152 строки
6.3 KiB
Python

import sys
import tensorflow as tf
import tensorflow.compat.v1 as tfv1
from .flags import FLAGS
from .logging import log_info, log_error, log_warn
def _load_checkpoint(session, checkpoint_path, allow_drop_layers, allow_lr_init=True):
# Load the checkpoint and put all variables into loading list
# we will exclude variables we do not wish to load and then
# we will initialize them instead
ckpt = tfv1.train.load_checkpoint(checkpoint_path)
vars_in_ckpt = frozenset(ckpt.get_variable_to_shape_map().keys())
load_vars = set(tfv1.global_variables())
init_vars = set()
# We explicitly allow the learning rate variable to be missing for backwards
# compatibility with older checkpoints.
lr_var = set(v for v in load_vars if v.op.name == 'learning_rate')
if lr_var and ('learning_rate' not in vars_in_ckpt or
(FLAGS.force_initialize_learning_rate and allow_lr_init)):
assert len(lr_var) <= 1
load_vars -= lr_var
init_vars |= lr_var
if FLAGS.load_cudnn:
# Initialize training from a CuDNN RNN checkpoint
# Identify the variables which we cannot load, and set them
# for initialization
missing_vars = set()
for v in load_vars:
if v.op.name not in vars_in_ckpt:
log_warn('CUDNN variable not found: %s' % (v.op.name))
missing_vars.add(v)
init_vars.add(v)
load_vars -= init_vars
# Check that the only missing variables (i.e. those to be initialised)
# are the Adam moment tensors, if they aren't then we have an issue
missing_var_names = [v.op.name for v in missing_vars]
if any('Adam' not in v for v in missing_var_names):
log_error('Tried to load a CuDNN RNN checkpoint but there were '
'more missing variables than just the Adam moment '
'tensors. Missing variables: {}'.format(missing_var_names))
sys.exit(1)
if allow_drop_layers and FLAGS.drop_source_layers > 0:
# This transfer learning approach requires supplying
# the layers which we exclude from the source model.
# Say we want to exclude all layers except for the first one,
# then we are dropping five layers total, so: drop_source_layers=5
# If we want to use all layers from the source model except
# the last one, we use this: drop_source_layers=1
if FLAGS.drop_source_layers >= 6:
log_warn('The checkpoint only has 6 layers, but you are trying to drop '
'all of them or more than all of them. Continuing and '
'dropping only 5 layers.')
FLAGS.drop_source_layers = 5
dropped_layers = ['2', '3', 'lstm', '5', '6'][-1 * int(FLAGS.drop_source_layers):]
# Initialize all variables needed for DS, but not loaded from ckpt
for v in load_vars:
if any(layer in v.op.name for layer in dropped_layers):
init_vars.add(v)
load_vars -= init_vars
for v in sorted(load_vars, key=lambda v: v.op.name):
log_info('Loading variable from checkpoint: %s' % (v.op.name))
v.load(ckpt.get_tensor(v.op.name), session=session)
for v in sorted(init_vars, key=lambda v: v.op.name):
log_info('Initializing variable: %s' % (v.op.name))
session.run(v.initializer)
def _checkpoint_path_or_none(checkpoint_filename):
checkpoint = tfv1.train.get_checkpoint_state(FLAGS.load_checkpoint_dir, checkpoint_filename)
if not checkpoint:
return None
return checkpoint.model_checkpoint_path
def _initialize_all_variables(session):
init_vars = tfv1.global_variables()
for v in init_vars:
session.run(v.initializer)
def _load_or_init_impl(session, method_order, allow_drop_layers, allow_lr_init=True):
for method in method_order:
# Load best validating checkpoint, saved in checkpoint file 'best_dev_checkpoint'
if method == 'best':
ckpt_path = _checkpoint_path_or_none('best_dev_checkpoint')
if ckpt_path:
log_info('Loading best validating checkpoint from {}'.format(ckpt_path))
return _load_checkpoint(session, ckpt_path, allow_drop_layers, allow_lr_init=allow_lr_init)
log_info('Could not find best validating checkpoint.')
# Load most recent checkpoint, saved in checkpoint file 'checkpoint'
elif method == 'last':
ckpt_path = _checkpoint_path_or_none('checkpoint')
if ckpt_path:
log_info('Loading most recent checkpoint from {}'.format(ckpt_path))
return _load_checkpoint(session, ckpt_path, allow_drop_layers, allow_lr_init=allow_lr_init)
log_info('Could not find most recent checkpoint.')
# Initialize all variables
elif method == 'init':
log_info('Initializing all variables.')
return _initialize_all_variables(session)
else:
log_error('Unknown initialization method: {}'.format(method))
sys.exit(1)
log_error('All initialization methods failed ({}).'.format(method_order))
sys.exit(1)
def reload_best_checkpoint(session):
_load_or_init_impl(session, ['best'], allow_drop_layers=False, allow_lr_init=False)
def load_or_init_graph_for_training(session):
'''
Load variables from checkpoint or initialize variables. By default this will
try to load the best validating checkpoint, then try the last checkpoint,
and finally initialize the weights from scratch. This can be overriden with
the `--load_train` flag. See its documentation for more info.
'''
if FLAGS.load_train == 'auto':
methods = ['best', 'last', 'init']
else:
methods = [FLAGS.load_train]
_load_or_init_impl(session, methods, allow_drop_layers=True)
def load_graph_for_evaluation(session):
'''
Load variables from checkpoint. Initialization is not allowed. By default
this will try to load the best validating checkpoint, then try the last
checkpoint. This can be overriden with the `--load_evaluate` flag. See its
documentation for more info.
'''
if FLAGS.load_evaluate == 'auto':
methods = ['best', 'last']
else:
methods = [FLAGS.load_evaluate]
_load_or_init_impl(session, methods, allow_drop_layers=False)