Update README.md with mentioning PyTorch (#116)

Summary:
As Title says.
Pull Request resolved: https://github.com/pytorch/FBGEMM/pull/116

Test Plan: CI

Differential Revision: D16747927

Pulled By: jianyuh

fbshipit-source-id: 6d60a12e11dad7da20ce0224de8bc611b2e44578
This commit is contained in:
Jianyu Huang 2019-08-12 09:19:22 -07:00 коммит произвёл Facebook Github Bot
Родитель 7b156071d8
Коммит aceefe3e0c
1 изменённых файлов: 3 добавлений и 3 удалений

Просмотреть файл

@ -12,9 +12,9 @@ row-wise quantization and outlier-aware quantization. FBGEMM also exploits
fusion opportunities in order to overcome the unique challenges of matrix
multiplication at lower precision with bandwidth-bound operations.
FBGEMM is used as a backend of Caffe2 quantized operators for x86 machines
(https://github.com/pytorch/pytorch/tree/master/caffe2/quantization/server).
We also plan to integrate FBGEMM into PyTorch.
FBGEMM is used as a backend of Caffe2 and PyTorch quantized operators for x86 machines:
* Caffe2: https://github.com/pytorch/pytorch/tree/master/caffe2/quantization/server
* PyTorch: https://github.com/pytorch/pytorch/tree/master/aten/src/ATen/native/quantized/cpu
## Examples