====== PyHive ====== PyHive is a collection of Python `DB-API `_ and `SQLAlchemy `_ interfaces for `Presto `_ and `Hive `_. Usage ===== DB-API ------ .. code-block:: python from pyhive import presto # or import hive cursor = presto.connect('localhost').cursor() cursor.execute('SELECT * FROM my_awesome_data LIMIT 10') print cursor.fetchone() print cursor.fetchall() DB-API (asynchronous) --------------------- .. code-block:: python from pyhive import hive from TCLIService.ttypes import TOperationState cursor = hive.connect('localhost').cursor() cursor.execute('SELECT * FROM my_awesome_data LIMIT 10', async=True) status = cursor.poll().operationState while status in (TOperationState.INITIALIZED_STATE, TOperationState.RUNNING_STATE): logs = cursor.fetch_logs() for message in logs: print message # If needed, an asynchronous query can be cancelled at any time with: # cursor.cancel() status = cursor.poll().operationState print cursor.fetchall() SQLAlchemy ---------- First install this package to register it with SQLAlchemy (see ``setup.py``). .. code-block:: python from sqlalchemy import * from sqlalchemy.engine import create_engine from sqlalchemy.schema import * # Presto engine = create_engine('presto://localhost:8080/hive/default') # Hive engine = create_engine('hive://localhost:10000/default') logs = Table('my_awesome_data', MetaData(bind=engine), autoload=True) print select([func.count('*')], from_obj=logs).scalar() Note: query generation functionality is not exhaustive or fully tested, but there should be no problem with raw SQL. Passing session configuration ----------------------------- .. code-block:: python # DB-API hive.connect('localhost', configuration={'hive.exec.reducers.max': '123'}) presto.connect('localhost', session_props={'query_max_run_time': '1234m'}) # SQLAlchemy create_engine('presto://user@host:443/hive', connect_args={'protocol': 'https'}) create_engine( 'hive://user@host:10000/database', connect_args={'configuration': {'hive.exec.reducers.max': '123'}}, ) # SQLAlchemy with LDAP create_engine( 'hive://user:password@host:10000/database', connect_args={'auth': 'LDAP'}, ) Requirements ============ Install using - ``pip install pyhive[hive]`` for the Hive interface and - ``pip install pyhive[presto]`` for the Presto interface. `PyHive` works with - Python 2.7 / Python 3 - For Presto: Presto install - For Hive: `HiveServer2 `_ daemon There's also a `third party Conda package `_. Changelog ========= See https://github.com/dropbox/PyHive/releases. Contributing ============ - Please fill out the Dropbox Contributor License Agreement at https://opensource.dropbox.com/cla/ and note this in your pull request. - Changes must come with tests, with the exception of trivial things like fixing comments. See .travis.yml for the test environment setup. Testing ======= .. image:: https://travis-ci.org/dropbox/PyHive.svg :target: https://travis-ci.org/dropbox/PyHive .. image:: http://codecov.io/github/dropbox/PyHive/coverage.svg?branch=master :target: http://codecov.io/github/dropbox/PyHive?branch=master Run the following in an environment with Hive/Presto:: ./scripts/make_test_tables.sh virtualenv --no-site-packages env source env/bin/activate pip install -e . pip install -r dev_requirements.txt py.test WARNING: This drops/creates tables named ``one_row``, ``one_row_complex``, and ``many_rows``, plus a database called ``pyhive_test_database``.