split train and validation steps

This commit is contained in:
Eren Golge 2018-03-02 07:54:35 -08:00
Родитель 793563b586
Коммит 021ac3978d
3 изменённых файлов: 297 добавлений и 204 удалений

Просмотреть файл

@ -20,11 +20,10 @@
"griffin_lim_iters": 60,
"power": 1.5,
"num_loader_workers": 32,
"num_loader_workers": 16,
"checkpoint": false,
"save_step": 69,
"data_path": "/data/shared/KeithIto/LJSpeech-1.0",
"data_path": "/run/shm/erogol/LJSpeech-1.0",
"output_path": "result",
"log_dir": "/home/erogol/projects/TTS/logs/"
}

Просмотреть файл

@ -16,16 +16,15 @@ class LJSpeechDataset(Dataset):
text_cleaner, num_mels, min_level_db, frame_shift_ms,
frame_length_ms, preemphasis, ref_level_db, num_freq, power):
f = open(csv_file, "r")
self.frames = [line.split('|') for line in f]
f.close()
with open(csv_file, "r") as f:
self.frames = [line.split('|') for line in f]
self.frames = self.frames[:256]
self.root_dir = root_dir
self.outputs_per_step = outputs_per_step
self.sample_rate = sample_rate
self.cleaners = text_cleaner
self.ap = AudioProcessor(sample_rate, num_mels, min_level_db, frame_shift_ms,
frame_length_ms, preemphasis, ref_level_db, num_freq, power
)
frame_length_ms, preemphasis, ref_level_db, num_freq, power)
print(" > Reading LJSpeech from - {}".format(root_dir))
print(" | > Number of instances : {}".format(len(self.frames)))
@ -41,11 +40,11 @@ class LJSpeechDataset(Dataset):
def __getitem__(self, idx):
wav_name = os.path.join(self.root_dir,
self.frames.ix[idx, 0]) + '.wav'
self.frames[idx][0]) + '.wav'
text = self.frames[idx][1]
text = np.asarray(text_to_sequence(text, [self.cleaners]), dtype=np.int32)
wav = np.asarray(self.load_wav(wav_name)[0], dtype=np.float32)
sample = {'text': text, 'wav': wav, 'item_idx': self.frames.ix[idx, 0]}
sample = {'text': text, 'wav': wav, 'item_idx': self.frames[idx][0]}
return sample
def get_dummy_data(self):

483
train.py
Просмотреть файл

@ -27,36 +27,265 @@ from utils.visual import plot_alignment, plot_spectrogram
from datasets.LJSpeech import LJSpeechDataset
from models.tacotron import Tacotron
use_cuda = torch.cuda.is_available()
parser = argparse.ArgumentParser()
parser.add_argument('--restore_step', type=int,
help='Global step to restore checkpoint', default=0)
parser.add_argument('--restore_path', type=str,
help='Folder path to checkpoints', default=0)
parser.add_argument('--config_path', type=str,
help='path to config file for training',)
args = parser.parse_args()
# setup output paths and read configs
c = load_config(args.config_path)
_ = os.path.dirname(os.path.realpath(__file__))
OUT_PATH = os.path.join(_, c.output_path)
OUT_PATH = create_experiment_folder(OUT_PATH)
CHECKPOINT_PATH = os.path.join(OUT_PATH, 'checkpoints')
shutil.copyfile(args.config_path, os.path.join(OUT_PATH, 'config.json'))
# save config to tmp place to be loaded by subsequent modules.
file_name = str(os.getpid())
tmp_path = os.path.join("/tmp/", file_name+'_tts')
pickle.dump(c, open(tmp_path, "wb"))
# setup tensorboard
LOG_DIR = OUT_PATH
tb = SummaryWriter(LOG_DIR)
def signal_handler(signal, frame):
"""Ctrl+C handler to remove empty experiment folder"""
print(" !! Pressed Ctrl+C !!")
remove_experiment_folder(OUT_PATH)
sys.exit(1)
def train(model, criterion, data_loader, optimizer, epoch):
model = model.train()
epoch_time = 0
print(" | > Epoch {}/{}".format(epoch, c.epochs))
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# setup input data
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
current_step = num_iter + args.restore_step + epoch * len(data_loader) + 1
# setup lr
current_lr = lr_decay(c.lr, current_step, c.warmup_steps)
for params_group in optimizer.param_groups:
params_group['lr'] = current_lr
optimizer.zero_grad()
# convert inputs to variables
text_input_var = Variable(text_input)
mel_spec_var = Variable(mel_input)
linear_spec_var = Variable(linear_input, volatile=True)
# sort sequence by length for curriculum learning
# TODO: might be unnecessary
sorted_lengths, indices = torch.sort(
text_lengths.view(-1), dim=0, descending=True)
sorted_lengths = sorted_lengths.long().numpy()
text_input_var = text_input_var[indices]
mel_spec_var = mel_spec_var[indices]
linear_spec_var = linear_spec_var[indices]
# dispatch data to GPU
if use_cuda:
text_input_var = text_input_var.cuda()
mel_spec_var = mel_spec_var.cuda()
linear_spec_var = linear_spec_var.cuda()
# forward pass
mel_output, linear_output, alignments =\
model.forward(text_input_var, mel_spec_var,
input_lengths= torch.autograd.Variable(torch.cuda.LongTensor(sorted_lengths)))
# loss computation
mel_loss = criterion(mel_output, mel_spec_var)
linear_loss = 0.5 * criterion(linear_output, linear_spec_var) \
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_spec_var[: ,: ,:n_priority_freq])
loss = mel_loss + linear_loss
# backpass and check the grad norm
loss.backward()
grad_norm, skip_flag = check_update(model, 0.5, 100)
if skip_flag:
optimizer.zero_grad()
print(" | > Iteration skipped!!")
continue
optimizer.step()
step_time = time.time() - start_time
epoch_time += step_time
# update
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
('linear_loss', linear_loss.data[0]),
('mel_loss', mel_loss.data[0]),
('grad_norm', grad_norm)])
# Plot Training Iter Stats
tb.add_scalar('TrainIterLoss/TotalLoss', loss.data[0], current_step)
tb.add_scalar('TrainIterLoss/LinearLoss', linear_loss.data[0],
current_step)
tb.add_scalar('TrainIterLoss/MelLoss', mel_loss.data[0], current_step)
tb.add_scalar('Params/LearningRate', optimizer.param_groups[0]['lr'],
current_step)
tb.add_scalar('Params/GradNorm', grad_norm, current_step)
tb.add_scalar('Time/StepTime', step_time, current_step)
if current_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model, optimizer, linear_loss.data[0],
OUT_PATH, current_step, epoch)
# Diagnostic visualizations
const_spec = linear_output[0].data.cpu().numpy()
gt_spec = linear_spec_var[0].data.cpu().numpy()
const_spec = plot_spectrogram(const_spec, dataset.ap)
gt_spec = plot_spectrogram(gt_spec, dataset.ap)
tb.add_image('Visual/Reconstruction', const_spec, current_step)
tb.add_image('Visual/GroundTruth', gt_spec, current_step)
align_img = alignments[0].data.cpu().numpy()
align_img = plot_alignment(align_img)
tb.add_image('Visual/Alignment', align_img, current_step)
# Sample audio
audio_signal = linear_output[0].data.cpu().numpy()
dataset.ap.griffin_lim_iters = 60
audio_signal = dataset.ap.inv_spectrogram(audio_signal.T)
try:
tb.add_audio('SampleAudio', audio_signal, current_step,
sample_rate=c.sample_rate)
except:
print("\n > Error at audio signal on TB!!")
print(audio_signal.max())
print(audio_signal.min())
avg_linear_loss = np.mean(
progbar.sum_values['linear_loss'][0] / max(1, progbar.sum_values['linear_loss'][1]))
avg_mel_loss = np.mean(
progbar.sum_values['mel_loss'][0] / max(1, progbar.sum_values['mel_loss'][1]))
avg_total_loss = avg_mel_loss + avg_linear_loss
# Plot Training Epoch Stats
tb.add_scalar('TrainEpochLoss/TotalLoss', loss.data[0], current_step)
tb.add_scalar('TrainEpochLoss/LinearLoss', linear_loss.data[0], current_step)
tb.add_scalar('TrainEpochLoss/MelLoss', mel_loss.data[0], current_step)
tb.add_scalar('Time/EpochTime', epoch_time, epoch)
epoch_time = 0
return avg_linear_loss, current_step
def evaluate(model, criterion, data_loader, current_step):
model = model.train()
epoch_time = 0
print("\n | > Validation")
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# setup input data
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
# convert inputs to variables
text_input_var = Variable(text_input)
mel_spec_var = Variable(mel_input)
linear_spec_var = Variable(linear_input, volatile=True)
# dispatch data to GPU
if use_cuda:
text_input_var = text_input_var.cuda()
mel_spec_var = mel_spec_var.cuda()
linear_spec_var = linear_spec_var.cuda()
# forward pass
mel_output, linear_output, alignments =\
model.forward(text_input_var, mel_spec_var)
# loss computation
mel_loss = criterion(mel_output, mel_spec_var)
linear_loss = 0.5 * criterion(linear_output, linear_spec_var) \
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_spec_var[: ,: ,:n_priority_freq])
loss = mel_loss + linear_loss
step_time = time.time() - start_time
epoch_time += step_time
# update
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
('linear_loss', linear_loss.data[0]),
('mel_loss', mel_loss.data[0])])
# Diagnostic visualizations
idx = np.random.randint(c.batch_size)
const_spec = linear_output[idx].data.cpu().numpy()
gt_spec = linear_spec_var[idx].data.cpu().numpy()
const_spec = plot_spectrogram(const_spec, data_loader.dataset.ap)
gt_spec = plot_spectrogram(gt_spec, data_loader.dataset.ap)
tb.add_image('ValVisual/Reconstruction', const_spec, current_step)
tb.add_image('ValVisual/GroundTruth', gt_spec, current_step)
align_img = alignments[idx].data.cpu().numpy()
align_img = plot_alignment(align_img)
tb.add_image('ValVisual/ValidationAlignment', align_img, current_step)
# Sample audio
audio_signal = linear_output[idx].data.cpu().numpy()
data_loader.dataset.ap.griffin_lim_iters = 60
audio_signal = data_loader.dataset.ap.inv_spectrogram(audio_signal.T)
try:
tb.add_audio('ValSampleAudio', audio_signal, current_step,
sample_rate=c.sample_rate)
except:
print("\n > Error at audio signal on TB!!")
print(audio_signal.max())
print(audio_signal.min())
# compute average losses
avg_linear_loss = np.mean(
progbar.sum_values['linear_loss'][0] / max(1, progbar.sum_values['linear_loss'][1]))
avg_mel_loss = np.mean(
progbar.sum_values['mel_loss'][0] / max(1, progbar.sum_values['mel_loss'][1]))
avg_total_loss = avg_mel_loss + avg_linear_loss
# Plot Learning Stats
tb.add_scalar('ValEpochLoss/TotalLoss', avg_total_loss, current_step)
tb.add_scalar('ValEpochLoss/LinearLoss', avg_linear_loss, current_step)
tb.add_scalar('ValEpochLoss/MelLoss', avg_mel_loss, current_step)
return avg_linear_loss
def main(args):
# setup output paths and read configs
c = load_config(args.config_path)
_ = os.path.dirname(os.path.realpath(__file__))
OUT_PATH = os.path.join(_, c.output_path)
OUT_PATH = create_experiment_folder(OUT_PATH)
CHECKPOINT_PATH = os.path.join(OUT_PATH, 'checkpoints')
shutil.copyfile(args.config_path, os.path.join(OUT_PATH, 'config.json'))
# save config to tmp place to be loaded by subsequent modules.
file_name = str(os.getpid())
tmp_path = os.path.join("/tmp/", file_name+'_tts')
pickle.dump(c, open(tmp_path, "wb"))
# setup tensorboard
LOG_DIR = OUT_PATH
tb = SummaryWriter(LOG_DIR)
# Ctrl+C handler to remove empty experiment folder
def signal_handler(signal, frame):
print(" !! Pressed Ctrl+C !!")
remove_experiment_folder(OUT_PATH)
sys.exit(1)
signal.signal(signal.SIGINT, signal_handler)
# Setup the dataset
dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata.csv'),
train_dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata_train.csv'),
os.path.join(c.data_path, 'wavs'),
c.r,
c.sample_rate,
@ -71,27 +300,42 @@ def main(args):
c.power
)
dataloader = DataLoader(dataset, batch_size=c.batch_size,
shuffle=True, collate_fn=dataset.collate_fn,
train_loader = DataLoader(train_dataset, batch_size=c.batch_size,
shuffle=True, collate_fn=train_dataset.collate_fn,
drop_last=True, num_workers=c.num_loader_workers,
pin_memory=True)
val_dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata_val.csv'),
os.path.join(c.data_path, 'wavs'),
c.r,
c.sample_rate,
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
)
val_loader = DataLoader(val_dataset, batch_size=c.batch_size,
shuffle=True, collate_fn=val_dataset.collate_fn,
drop_last=True, num_workers= 4,
pin_memory=True)
# setup the model
model = Tacotron(c.embedding_size,
c.hidden_size,
c.num_mels,
c.num_freq,
c.r)
# plot model on tensorboard
dummy_input = dataset.get_dummy_data()
## TODO: onnx does not support RNN fully yet
# model_proto_path = os.path.join(OUT_PATH, "model.proto")
# onnx.export(model, dummy_input, model_proto_path, verbose=True)
# tb.add_graph_onnx(model_proto_path)
optimizer = optim.Adam(model.parameters(), lr=c.lr)
if use_cuda:
criterion = nn.L1Loss().cuda()
else:
criterion = nn.L1Loss()
if args.restore_step:
checkpoint = torch.load(os.path.join(
@ -118,169 +362,20 @@ def main(args):
num_params = count_parameters(model)
print(" | > Model has {} parameters".format(num_params))
model = model.train()
if not os.path.exists(CHECKPOINT_PATH):
os.mkdir(CHECKPOINT_PATH)
if use_cuda:
criterion = nn.L1Loss().cuda()
else:
criterion = nn.L1Loss()
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
#lr_scheduler = ReduceLROnPlateau(optimizer, factor=c.lr_decay,
# patience=c.lr_patience, verbose=True)
epoch_time = 0
if 'best_loss' not in locals():
best_loss = float('inf')
for epoch in range(0, c.epochs):
print("\n | > Epoch {}/{}".format(epoch, c.epochs))
progbar = Progbar(len(dataset) / c.batch_size)
for num_iter, data in enumerate(dataloader):
start_time = time.time()
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
current_step = num_iter + args.restore_step + epoch * len(dataloader) + 1
# setup lr
current_lr = lr_decay(c.lr, current_step, c.warmup_steps)
for params_group in optimizer.param_groups:
params_group['lr'] = current_lr
optimizer.zero_grad()
# Add a single frame of zeros to Mel Specs for better end detection
#try:
# mel_input = np.concatenate((np.zeros(
# [c.batch_size, 1, c.num_mels], dtype=np.float32),
# mel_input[:, 1:, :]), axis=1)
#except:
# raise TypeError("not same dimension")
# convert inputs to variables
text_input_var = Variable(text_input)
mel_spec_var = Variable(mel_input)
linear_spec_var = Variable(linear_input, volatile=True)
# sort sequence by length.
# TODO: might be unnecessary
sorted_lengths, indices = torch.sort(
text_lengths.view(-1), dim=0, descending=True)
sorted_lengths = sorted_lengths.long().numpy()
text_input_var = text_input_var[indices]
mel_spec_var = mel_spec_var[indices]
linear_spec_var = linear_spec_var[indices]
if use_cuda:
text_input_var = text_input_var.cuda()
mel_spec_var = mel_spec_var.cuda()
linear_spec_var = linear_spec_var.cuda()
mel_output, linear_output, alignments =\
model.forward(text_input_var, mel_spec_var,
input_lengths= torch.autograd.Variable(torch.cuda.LongTensor(sorted_lengths)))
mel_loss = criterion(mel_output, mel_spec_var)
#linear_loss = torch.abs(linear_output - linear_spec_var)
#linear_loss = 0.5 * \
#torch.mean(linear_loss) + 0.5 * \
#torch.mean(linear_loss[:, :n_priority_freq, :])
linear_loss = 0.5 * criterion(linear_output, linear_spec_var) \
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_spec_var[: ,: ,:n_priority_freq])
loss = mel_loss + linear_loss
loss.backward()
grad_norm, skip_flag = check_update(model, 0.5, 100)
if skip_flag:
optimizer.zero_grad()
print(" | > Iteration skipped!!")
continue
optimizer.step()
step_time = time.time() - start_time
epoch_time += step_time
progbar.update(num_iter+1, values=[('total_loss', loss.data[0]),
('linear_loss', linear_loss.data[0]),
('mel_loss', mel_loss.data[0]),
('grad_norm', grad_norm)])
# Plot Learning Stats
tb.add_scalar('Loss/TotalLoss', loss.data[0], current_step)
tb.add_scalar('Loss/LinearLoss', linear_loss.data[0],
current_step)
tb.add_scalar('Loss/MelLoss', mel_loss.data[0], current_step)
tb.add_scalar('Params/LearningRate', optimizer.param_groups[0]['lr'],
current_step)
tb.add_scalar('Params/GradNorm', grad_norm, current_step)
tb.add_scalar('Time/StepTime', step_time, current_step)
align_img = alignments[0].data.cpu().numpy()
align_img = plot_alignment(align_img)
tb.add_image('Attn/Alignment', align_img, current_step)
if current_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model, optimizer, linear_loss.data[0],
OUT_PATH, current_step, epoch)
# Diagnostic visualizations
const_spec = linear_output[0].data.cpu().numpy()
gt_spec = linear_spec_var[0].data.cpu().numpy()
const_spec = plot_spectrogram(const_spec, dataset.ap)
gt_spec = plot_spectrogram(gt_spec, dataset.ap)
tb.add_image('Spec/Reconstruction', const_spec, current_step)
tb.add_image('Spec/GroundTruth', gt_spec, current_step)
align_img = alignments[0].data.cpu().numpy()
align_img = plot_alignment(align_img)
tb.add_image('Attn/Alignment', align_img, current_step)
# Sample audio
audio_signal = linear_output[0].data.cpu().numpy()
dataset.ap.griffin_lim_iters = 60
audio_signal = dataset.ap.inv_spectrogram(audio_signal.T)
try:
tb.add_audio('SampleAudio', audio_signal, current_step,
sample_rate=c.sample_rate)
except:
print("\n > Error at audio signal on TB!!")
print(audio_signal.max())
print(audio_signal.min())
# average loss after the epoch
avg_epoch_loss = np.mean(
progbar.sum_values['linear_loss'][0] / max(1, progbar.sum_values['linear_loss'][1]))
best_loss = save_best_model(model, optimizer, avg_epoch_loss,
train_loss, current_step = train(model, criterion, train_loader, optimizer, epoch)
val_loss = evaluate(model, criterion, val_loader, current_step)
best_loss = save_best_model(model, optimizer, val_loss,
best_loss, OUT_PATH,
current_step, epoch)
tb.add_scalar('Time/EpochTime', epoch_time, epoch)
epoch_time = 0
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--restore_step', type=int,
help='Global step to restore checkpoint', default=0)
parser.add_argument('--restore_path', type=str,
help='Folder path to checkpoints', default=0)
parser.add_argument('--config_path', type=str,
help='path to config file for training',)
args = parser.parse_args()
signal.signal(signal.SIGINT, signal_handler)
main(args)