update train.py for guided attention

This commit is contained in:
erogol 2020-03-09 21:04:13 +01:00
Родитель 796a59d0cc
Коммит 032bf312c6
2 изменённых файлов: 86 добавлений и 111 удалений

195
train.py
Просмотреть файл

@ -114,7 +114,7 @@ def format_data(data):
return text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, avg_text_length, avg_spec_length
def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
def train(model, criterion, optimizer, optimizer_st, scheduler,
ap, global_step, epoch):
data_loader = setup_loader(ap, model.decoder.r, is_val=False,
verbose=(epoch == 0))
@ -132,6 +132,8 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
if c.bidirectional_decoder:
train_values['avg_decoder_b_loss'] = 0 # decoder backward loss
train_values['avg_decoder_c_loss'] = 0 # decoder consistency loss
if c.ga_alpha > 0:
train_values['avg_ga_loss'] = 0 # guidede attention loss
keep_avg = KeepAverage()
keep_avg.add_values(train_values)
print("\n > Epoch {}/{}".format(epoch, c.epochs), flush=True)
@ -164,39 +166,27 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
else:
decoder_output, postnet_output, alignments, stop_tokens = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
decoder_backward_output = None
# loss computation
stop_loss = criterion_st(stop_tokens,
stop_targets, mel_lengths) if c.stopnet else torch.zeros(1)
if c.loss_masking:
decoder_loss = criterion(decoder_output, mel_input, mel_lengths)
if c.model in ["Tacotron", "TacotronGST"]:
postnet_loss = criterion(postnet_output, linear_input,
mel_lengths)
else:
postnet_loss = criterion(postnet_output, mel_input,
mel_lengths)
# set the alignment lengths wrt reduction factor for guided attention
if mel_lengths.max() % model.decoder.r != 0:
alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r
else:
decoder_loss = criterion(decoder_output, mel_input)
if c.model in ["Tacotron", "TacotronGST"]:
postnet_loss = criterion(postnet_output, linear_input)
else:
postnet_loss = criterion(postnet_output, mel_input)
loss = decoder_loss + postnet_loss
if not c.separate_stopnet and c.stopnet:
loss += stop_loss
alignment_lengths = mel_lengths // model.decoder.r
# backward decoder
# compute loss
loss_dict = criterion(postnet_output, decoder_output, mel_input,
linear_input, stop_tokens, stop_targets,
mel_lengths, decoder_backward_output,
alignments, alignment_lengths, text_lengths)
if c.bidirectional_decoder:
if c.loss_masking:
decoder_backward_loss = criterion(torch.flip(decoder_backward_output, dims=(1, )), mel_input, mel_lengths)
else:
decoder_backward_loss = criterion(torch.flip(decoder_backward_output, dims=(1, )), mel_input)
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_backward_output, dims=(1, )), decoder_output)
loss += decoder_backward_loss + decoder_c_loss
keep_avg.update_values({'avg_decoder_b_loss': decoder_backward_loss.item(), 'avg_decoder_c_loss': decoder_c_loss.item()})
keep_avg.update_values({'avg_decoder_b_loss': loss_dict['decoder_backward_loss'].item(),
'avg_decoder_c_loss': loss_dict['decoder_c_loss'].item()})
if c.ga_alpha > 0:
keep_avg.update_values({'avg_ga_loss': loss_dict['ga_loss'].item()})
loss.backward()
# backward pass
loss_dict['loss'].backward()
optimizer, current_lr = adam_weight_decay(optimizer)
grad_norm, grad_flag = check_update(model, c.grad_clip, ignore_stopnet=True)
optimizer.step()
@ -207,7 +197,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
# backpass and check the grad norm for stop loss
if c.separate_stopnet:
stop_loss.backward()
loss_dict['stopnet_loss'].backward()
optimizer_st, _ = adam_weight_decay(optimizer_st)
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
optimizer_st.step()
@ -220,36 +210,31 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
if global_step % c.print_step == 0:
print(
" | > Step:{}/{} GlobalStep:{} PostnetLoss:{:.5f} "
"DecoderLoss:{:.5f} StopLoss:{:.5f} AlignScore:{:.4f} GradNorm:{:.5f} "
"DecoderLoss:{:.5f} StopLoss:{:.5f} GALoss:{:.5f} GradNorm:{:.5f} "
"GradNormST:{:.5f} AvgTextLen:{:.1f} AvgSpecLen:{:.1f} StepTime:{:.2f} "
"LoaderTime:{:.2f} LR:{:.6f}".format(
num_iter, batch_n_iter, global_step, postnet_loss.item(),
decoder_loss.item(), stop_loss.item(), align_score,
grad_norm, grad_norm_st, avg_text_length, avg_spec_length,
step_time, loader_time, current_lr),
num_iter, batch_n_iter, global_step, loss_dict['postnet_loss'].item(),
loss_dict['decoder_loss'].item(), loss_dict['stopnet_loss'].item(),
loss_dict['ga_loss'].item(), grad_norm, grad_norm_st, avg_text_length,
avg_spec_length, step_time, loader_time, current_lr),
flush=True)
# aggregate losses from processes
if num_gpus > 1:
postnet_loss = reduce_tensor(postnet_loss.data, num_gpus)
decoder_loss = reduce_tensor(decoder_loss.data, num_gpus)
loss = reduce_tensor(loss.data, num_gpus)
stop_loss = reduce_tensor(stop_loss.data,
num_gpus) if c.stopnet else stop_loss
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data,
num_gpus) if c.stopnet else loss_dict['stopnet_loss']
if args.rank == 0:
update_train_values = {
'avg_postnet_loss':
float(postnet_loss.item()),
'avg_decoder_loss':
float(decoder_loss.item()),
'avg_stop_loss':
stop_loss
if isinstance(stop_loss, float) else float(stop_loss.item()),
'avg_step_time':
step_time,
'avg_loader_time':
loader_time
'avg_postnet_loss': float(loss_dict['postnet_loss'].item()),
'avg_decoder_loss': float(loss_dict['decoder_loss'].item()),
'avg_stop_loss': loss_dict['stopnet_loss'].item()
if isinstance(loss_dict['stopnet_loss'], float) else float(loss_dict['stopnet_loss'].item()),
'avg_step_time': step_time,
'avg_loader_time': loader_time
}
keep_avg.update_values(update_train_values)
@ -257,8 +242,8 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
# reduce TB load
if global_step % 10 == 0:
iter_stats = {
"loss_posnet": postnet_loss.item(),
"loss_decoder": decoder_loss.item(),
"loss_posnet": loss_dict['postnet_loss'].item(),
"loss_decoder": loss_dict['decoder_loss'].item(),
"lr": current_lr,
"grad_norm": grad_norm,
"grad_norm_st": grad_norm_st,
@ -270,7 +255,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
if c.checkpoint:
# save model
save_checkpoint(model, optimizer, optimizer_st,
postnet_loss.item(), OUT_PATH, global_step,
loss_dict['postnet_loss'].item(), OUT_PATH, global_step,
epoch)
# Diagnostic visualizations
@ -295,7 +280,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
if c.model in ["Tacotron", "TacotronGST"]:
train_audio = ap.inv_spectrogram(const_spec.T)
else:
train_audio = ap.inv_mel_spectrogram(const_spec.T)
train_audio = ap.inv_melspectrogram(const_spec.T)
tb_logger.tb_train_audios(global_step,
{'TrainAudio': train_audio},
c.audio["sample_rate"])
@ -304,11 +289,11 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
# print epoch stats
print(" | > EPOCH END -- GlobalStep:{} "
"AvgPostnetLoss:{:.5f} AvgDecoderLoss:{:.5f} "
"AvgStopLoss:{:.5f} AvgAlignScore:{:3f} EpochTime:{:.2f} "
"AvgStopLoss:{:.5f} AvgGALoss:{:3f} EpochTime:{:.2f} "
"AvgStepTime:{:.2f} AvgLoaderTime:{:.2f}".format(
global_step, keep_avg['avg_postnet_loss'],
keep_avg['avg_decoder_loss'], keep_avg['avg_stop_loss'],
keep_avg['avg_align_score'], epoch_time,
keep_avg['avg_ga_loss'], epoch_time,
keep_avg['avg_step_time'], keep_avg['avg_loader_time']),
flush=True)
# Plot Epoch Stats
@ -321,6 +306,8 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
"alignment_score": keep_avg['avg_align_score'],
"epoch_time": epoch_time
}
if c.ga_alpha > 0:
epoch_stats['guided_attention_loss'] = keep_avg['avg_ga_loss']
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
if c.tb_model_param_stats:
tb_logger.tb_model_weights(model, global_step)
@ -328,7 +315,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
@torch.no_grad()
def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
def evaluate(model, criterion, ap, global_step, epoch):
data_loader = setup_loader(ap, model.decoder.r, is_val=True)
if c.use_speaker_embedding:
speaker_mapping = load_speaker_mapping(OUT_PATH)
@ -343,6 +330,8 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
if c.bidirectional_decoder:
eval_values_dict['avg_decoder_b_loss'] = 0 # decoder backward loss
eval_values_dict['avg_decoder_c_loss'] = 0 # decoder consistency loss
if c.ga_alpha > 0:
eval_values_dict['avg_ga_loss'] = 0 # guidede attention loss
keep_avg = KeepAverage()
keep_avg.add_values(eval_values_dict)
print("\n > Validation")
@ -362,37 +351,26 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
else:
decoder_output, postnet_output, alignments, stop_tokens = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
decoder_backward_output = None
# loss computation
stop_loss = criterion_st(
stop_tokens, stop_targets, mel_lengths) if c.stopnet else torch.zeros(1)
if c.loss_masking:
decoder_loss = criterion(decoder_output, mel_input,
mel_lengths)
if c.model in ["Tacotron", "TacotronGST"]:
postnet_loss = criterion(postnet_output, linear_input,
mel_lengths)
else:
postnet_loss = criterion(postnet_output, mel_input,
mel_lengths)
# set the alignment lengths wrt reduction factor for guided attention
if mel_lengths.max() % model.decoder.r != 0:
alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r
else:
decoder_loss = criterion(decoder_output, mel_input)
if c.model in ["Tacotron", "TacotronGST"]:
postnet_loss = criterion(postnet_output, linear_input)
else:
postnet_loss = criterion(postnet_output, mel_input)
loss = decoder_loss + postnet_loss + stop_loss
alignment_lengths = mel_lengths // model.decoder.r
# backward decoder loss
# compute loss
loss_dict = criterion(postnet_output, decoder_output, mel_input,
linear_input, stop_tokens, stop_targets,
mel_lengths, decoder_backward_output,
alignments, alignment_lengths, text_lengths)
if c.bidirectional_decoder:
if c.loss_masking:
decoder_backward_loss = criterion(torch.flip(decoder_backward_output, dims=(1, )), mel_input, mel_lengths)
else:
decoder_backward_loss = criterion(torch.flip(decoder_backward_output, dims=(1, )), mel_input)
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_backward_output, dims=(1, )), decoder_output)
loss += decoder_backward_loss + decoder_c_loss
keep_avg.update_values({'avg_decoder_b_loss': decoder_backward_loss.item(), 'avg_decoder_c_loss': decoder_c_loss.item()})
keep_avg.update_values({'avg_decoder_b_loss': loss_dict['decoder_backward_loss'].item(),
'avg_decoder_c_loss': loss_dict['decoder_c_loss'].item()})
if c.ga_alpha > 0:
keep_avg.update_values({'avg_ga_loss': loss_dict['ga_loss'].item()})
# step time
step_time = time.time() - start_time
epoch_time += step_time
@ -409,23 +387,27 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
keep_avg.update_values({
'avg_postnet_loss':
float(postnet_loss.item()),
float(loss_dict['postnet_loss'].item()),
'avg_decoder_loss':
float(decoder_loss.item()),
float(loss_dict['decoder_loss'].item()),
'avg_stop_loss':
float(stop_loss.item()),
float(loss_dict['stopnet_loss'].item()),
})
if num_iter % c.print_step == 0:
print(
" | > TotalLoss: {:.5f} PostnetLoss: {:.5f} - {:.5f} DecoderLoss:{:.5f} - {:.5f} "
"StopLoss: {:.5f} - {:.5f} AlignScore: {:.4f} : {:.4f}"
.format(loss.item(), postnet_loss.item(),
"StopLoss: {:.5f} - {:.5f} GALoss: {:.5f} - {:.5f} AlignScore: {:.4f} - {:.4f}"
.format(loss_dict['loss'].item(),
loss_dict['postnet_loss'].item(),
keep_avg['avg_postnet_loss'],
decoder_loss.item(),
keep_avg['avg_decoder_loss'], stop_loss.item(),
keep_avg['avg_stop_loss'], align_score,
keep_avg['avg_align_score']),
loss_dict['decoder_loss'].item(),
keep_avg['avg_decoder_loss'],
loss_dict['stopnet_loss'].item(),
keep_avg['avg_stop_loss'],
loss_dict['ga_loss'].item(),
keep_avg['avg_ga_loss'],
align_score, keep_avg['avg_align_score']),
flush=True)
if args.rank == 0:
@ -447,7 +429,7 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
if c.model in ["Tacotron", "TacotronGST"]:
eval_audio = ap.inv_spectrogram(const_spec.T)
else:
eval_audio = ap.inv_mel_spectrogram(const_spec.T)
eval_audio = ap.inv_melspectrogram(const_spec.T)
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
c.audio["sample_rate"])
@ -456,13 +438,15 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
"loss_postnet": keep_avg['avg_postnet_loss'],
"loss_decoder": keep_avg['avg_decoder_loss'],
"stop_loss": keep_avg['avg_stop_loss'],
"alignment_score": keep_avg['avg_align_score']
"alignment_score": keep_avg['avg_align_score'],
}
if c.bidirectional_decoder:
epoch_stats['loss_decoder_backward'] = keep_avg['avg_decoder_b_loss']
align_b_img = alignments_backward[idx].data.cpu().numpy()
eval_figures['alignment_backward'] = plot_alignment(align_b_img)
if c.ga_alpha > 0:
epoch_stats['guided_attention_loss'] = keep_avg['avg_ga_loss']
tb_logger.tb_eval_stats(global_step, epoch_stats)
tb_logger.tb_eval_figures(global_step, eval_figures)
@ -486,7 +470,7 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
style_wav = c.get("style_wav_for_test")
for idx, test_sentence in enumerate(test_sentences):
try:
wav, alignment, decoder_output, postnet_output, stop_tokens = synthesis(
wav, alignment, decoder_output, postnet_output, stop_tokens, _ = synthesis(
model,
test_sentence,
c,
@ -565,14 +549,8 @@ def main(args): # pylint: disable=redefined-outer-name
else:
optimizer_st = None
if c.loss_masking:
criterion = L1LossMasked(c.seq_len_norm) if c.model in ["Tacotron", "TacotronGST"
] else MSELossMasked(c.seq_len_norm)
else:
criterion = nn.L1Loss() if c.model in ["Tacotron", "TacotronGST"
] else nn.MSELoss()
criterion_st = BCELossMasked(
pos_weight=torch.tensor(10)) if c.stopnet else None
# setup criterion
criterion = TacotronLoss(c, stopnet_pos_weight=10.0, ga_sigma=0.4)
if args.restore_path:
checkpoint = torch.load(args.restore_path, map_location='cpu')
@ -600,8 +578,6 @@ def main(args): # pylint: disable=redefined-outer-name
if use_cuda:
model.cuda()
criterion.cuda()
if criterion_st:
criterion_st.cuda()
# DISTRUBUTED
if num_gpus > 1:
@ -631,11 +607,10 @@ def main(args): # pylint: disable=redefined-outer-name
model.decoder_backward.set_r(r)
print(" > Number of outputs per iteration:", model.decoder.r)
train_loss, global_step = train(model, criterion, criterion_st,
optimizer, optimizer_st, scheduler, ap,
train_loss, global_step = train(model, criterion, optimizer,
optimizer_st, scheduler, ap,
global_step, epoch)
val_loss = evaluate(model, criterion, criterion_st, ap, global_step,
epoch)
val_loss = evaluate(model, criterion, ap, global_step, epoch)
print(" | > Training Loss: {:.5f} Validation Loss: {:.5f}".format(
train_loss, val_loss),
flush=True)

Просмотреть файл

@ -31,7 +31,7 @@ class AudioProcessor(object):
**_):
print(" > Setting up Audio Processor...")
# setup class attributed
self.sample_rate = sample_rate
self.num_mels = num_mels
self.min_level_db = min_level_db or 0