зеркало из https://github.com/mozilla/TTS.git
update train.py for guided attention
This commit is contained in:
Родитель
796a59d0cc
Коммит
032bf312c6
195
train.py
195
train.py
|
@ -114,7 +114,7 @@ def format_data(data):
|
||||||
return text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, avg_text_length, avg_spec_length
|
return text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, avg_text_length, avg_spec_length
|
||||||
|
|
||||||
|
|
||||||
def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
def train(model, criterion, optimizer, optimizer_st, scheduler,
|
||||||
ap, global_step, epoch):
|
ap, global_step, epoch):
|
||||||
data_loader = setup_loader(ap, model.decoder.r, is_val=False,
|
data_loader = setup_loader(ap, model.decoder.r, is_val=False,
|
||||||
verbose=(epoch == 0))
|
verbose=(epoch == 0))
|
||||||
|
@ -132,6 +132,8 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
if c.bidirectional_decoder:
|
if c.bidirectional_decoder:
|
||||||
train_values['avg_decoder_b_loss'] = 0 # decoder backward loss
|
train_values['avg_decoder_b_loss'] = 0 # decoder backward loss
|
||||||
train_values['avg_decoder_c_loss'] = 0 # decoder consistency loss
|
train_values['avg_decoder_c_loss'] = 0 # decoder consistency loss
|
||||||
|
if c.ga_alpha > 0:
|
||||||
|
train_values['avg_ga_loss'] = 0 # guidede attention loss
|
||||||
keep_avg = KeepAverage()
|
keep_avg = KeepAverage()
|
||||||
keep_avg.add_values(train_values)
|
keep_avg.add_values(train_values)
|
||||||
print("\n > Epoch {}/{}".format(epoch, c.epochs), flush=True)
|
print("\n > Epoch {}/{}".format(epoch, c.epochs), flush=True)
|
||||||
|
@ -164,39 +166,27 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
else:
|
else:
|
||||||
decoder_output, postnet_output, alignments, stop_tokens = model(
|
decoder_output, postnet_output, alignments, stop_tokens = model(
|
||||||
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
|
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
|
||||||
|
decoder_backward_output = None
|
||||||
|
|
||||||
# loss computation
|
# set the alignment lengths wrt reduction factor for guided attention
|
||||||
stop_loss = criterion_st(stop_tokens,
|
if mel_lengths.max() % model.decoder.r != 0:
|
||||||
stop_targets, mel_lengths) if c.stopnet else torch.zeros(1)
|
alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r
|
||||||
if c.loss_masking:
|
|
||||||
decoder_loss = criterion(decoder_output, mel_input, mel_lengths)
|
|
||||||
if c.model in ["Tacotron", "TacotronGST"]:
|
|
||||||
postnet_loss = criterion(postnet_output, linear_input,
|
|
||||||
mel_lengths)
|
|
||||||
else:
|
|
||||||
postnet_loss = criterion(postnet_output, mel_input,
|
|
||||||
mel_lengths)
|
|
||||||
else:
|
else:
|
||||||
decoder_loss = criterion(decoder_output, mel_input)
|
alignment_lengths = mel_lengths // model.decoder.r
|
||||||
if c.model in ["Tacotron", "TacotronGST"]:
|
|
||||||
postnet_loss = criterion(postnet_output, linear_input)
|
|
||||||
else:
|
|
||||||
postnet_loss = criterion(postnet_output, mel_input)
|
|
||||||
loss = decoder_loss + postnet_loss
|
|
||||||
if not c.separate_stopnet and c.stopnet:
|
|
||||||
loss += stop_loss
|
|
||||||
|
|
||||||
# backward decoder
|
# compute loss
|
||||||
|
loss_dict = criterion(postnet_output, decoder_output, mel_input,
|
||||||
|
linear_input, stop_tokens, stop_targets,
|
||||||
|
mel_lengths, decoder_backward_output,
|
||||||
|
alignments, alignment_lengths, text_lengths)
|
||||||
if c.bidirectional_decoder:
|
if c.bidirectional_decoder:
|
||||||
if c.loss_masking:
|
keep_avg.update_values({'avg_decoder_b_loss': loss_dict['decoder_backward_loss'].item(),
|
||||||
decoder_backward_loss = criterion(torch.flip(decoder_backward_output, dims=(1, )), mel_input, mel_lengths)
|
'avg_decoder_c_loss': loss_dict['decoder_c_loss'].item()})
|
||||||
else:
|
if c.ga_alpha > 0:
|
||||||
decoder_backward_loss = criterion(torch.flip(decoder_backward_output, dims=(1, )), mel_input)
|
keep_avg.update_values({'avg_ga_loss': loss_dict['ga_loss'].item()})
|
||||||
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_backward_output, dims=(1, )), decoder_output)
|
|
||||||
loss += decoder_backward_loss + decoder_c_loss
|
|
||||||
keep_avg.update_values({'avg_decoder_b_loss': decoder_backward_loss.item(), 'avg_decoder_c_loss': decoder_c_loss.item()})
|
|
||||||
|
|
||||||
loss.backward()
|
# backward pass
|
||||||
|
loss_dict['loss'].backward()
|
||||||
optimizer, current_lr = adam_weight_decay(optimizer)
|
optimizer, current_lr = adam_weight_decay(optimizer)
|
||||||
grad_norm, grad_flag = check_update(model, c.grad_clip, ignore_stopnet=True)
|
grad_norm, grad_flag = check_update(model, c.grad_clip, ignore_stopnet=True)
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
@ -207,7 +197,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
|
|
||||||
# backpass and check the grad norm for stop loss
|
# backpass and check the grad norm for stop loss
|
||||||
if c.separate_stopnet:
|
if c.separate_stopnet:
|
||||||
stop_loss.backward()
|
loss_dict['stopnet_loss'].backward()
|
||||||
optimizer_st, _ = adam_weight_decay(optimizer_st)
|
optimizer_st, _ = adam_weight_decay(optimizer_st)
|
||||||
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
|
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
|
||||||
optimizer_st.step()
|
optimizer_st.step()
|
||||||
|
@ -220,36 +210,31 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
if global_step % c.print_step == 0:
|
if global_step % c.print_step == 0:
|
||||||
print(
|
print(
|
||||||
" | > Step:{}/{} GlobalStep:{} PostnetLoss:{:.5f} "
|
" | > Step:{}/{} GlobalStep:{} PostnetLoss:{:.5f} "
|
||||||
"DecoderLoss:{:.5f} StopLoss:{:.5f} AlignScore:{:.4f} GradNorm:{:.5f} "
|
"DecoderLoss:{:.5f} StopLoss:{:.5f} GALoss:{:.5f} GradNorm:{:.5f} "
|
||||||
"GradNormST:{:.5f} AvgTextLen:{:.1f} AvgSpecLen:{:.1f} StepTime:{:.2f} "
|
"GradNormST:{:.5f} AvgTextLen:{:.1f} AvgSpecLen:{:.1f} StepTime:{:.2f} "
|
||||||
"LoaderTime:{:.2f} LR:{:.6f}".format(
|
"LoaderTime:{:.2f} LR:{:.6f}".format(
|
||||||
num_iter, batch_n_iter, global_step, postnet_loss.item(),
|
num_iter, batch_n_iter, global_step, loss_dict['postnet_loss'].item(),
|
||||||
decoder_loss.item(), stop_loss.item(), align_score,
|
loss_dict['decoder_loss'].item(), loss_dict['stopnet_loss'].item(),
|
||||||
grad_norm, grad_norm_st, avg_text_length, avg_spec_length,
|
loss_dict['ga_loss'].item(), grad_norm, grad_norm_st, avg_text_length,
|
||||||
step_time, loader_time, current_lr),
|
avg_spec_length, step_time, loader_time, current_lr),
|
||||||
flush=True)
|
flush=True)
|
||||||
|
|
||||||
# aggregate losses from processes
|
# aggregate losses from processes
|
||||||
if num_gpus > 1:
|
if num_gpus > 1:
|
||||||
postnet_loss = reduce_tensor(postnet_loss.data, num_gpus)
|
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
|
||||||
decoder_loss = reduce_tensor(decoder_loss.data, num_gpus)
|
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
|
||||||
loss = reduce_tensor(loss.data, num_gpus)
|
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
|
||||||
stop_loss = reduce_tensor(stop_loss.data,
|
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data,
|
||||||
num_gpus) if c.stopnet else stop_loss
|
num_gpus) if c.stopnet else loss_dict['stopnet_loss']
|
||||||
|
|
||||||
if args.rank == 0:
|
if args.rank == 0:
|
||||||
update_train_values = {
|
update_train_values = {
|
||||||
'avg_postnet_loss':
|
'avg_postnet_loss': float(loss_dict['postnet_loss'].item()),
|
||||||
float(postnet_loss.item()),
|
'avg_decoder_loss': float(loss_dict['decoder_loss'].item()),
|
||||||
'avg_decoder_loss':
|
'avg_stop_loss': loss_dict['stopnet_loss'].item()
|
||||||
float(decoder_loss.item()),
|
if isinstance(loss_dict['stopnet_loss'], float) else float(loss_dict['stopnet_loss'].item()),
|
||||||
'avg_stop_loss':
|
'avg_step_time': step_time,
|
||||||
stop_loss
|
'avg_loader_time': loader_time
|
||||||
if isinstance(stop_loss, float) else float(stop_loss.item()),
|
|
||||||
'avg_step_time':
|
|
||||||
step_time,
|
|
||||||
'avg_loader_time':
|
|
||||||
loader_time
|
|
||||||
}
|
}
|
||||||
keep_avg.update_values(update_train_values)
|
keep_avg.update_values(update_train_values)
|
||||||
|
|
||||||
|
@ -257,8 +242,8 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
# reduce TB load
|
# reduce TB load
|
||||||
if global_step % 10 == 0:
|
if global_step % 10 == 0:
|
||||||
iter_stats = {
|
iter_stats = {
|
||||||
"loss_posnet": postnet_loss.item(),
|
"loss_posnet": loss_dict['postnet_loss'].item(),
|
||||||
"loss_decoder": decoder_loss.item(),
|
"loss_decoder": loss_dict['decoder_loss'].item(),
|
||||||
"lr": current_lr,
|
"lr": current_lr,
|
||||||
"grad_norm": grad_norm,
|
"grad_norm": grad_norm,
|
||||||
"grad_norm_st": grad_norm_st,
|
"grad_norm_st": grad_norm_st,
|
||||||
|
@ -270,7 +255,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
if c.checkpoint:
|
if c.checkpoint:
|
||||||
# save model
|
# save model
|
||||||
save_checkpoint(model, optimizer, optimizer_st,
|
save_checkpoint(model, optimizer, optimizer_st,
|
||||||
postnet_loss.item(), OUT_PATH, global_step,
|
loss_dict['postnet_loss'].item(), OUT_PATH, global_step,
|
||||||
epoch)
|
epoch)
|
||||||
|
|
||||||
# Diagnostic visualizations
|
# Diagnostic visualizations
|
||||||
|
@ -295,7 +280,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
if c.model in ["Tacotron", "TacotronGST"]:
|
if c.model in ["Tacotron", "TacotronGST"]:
|
||||||
train_audio = ap.inv_spectrogram(const_spec.T)
|
train_audio = ap.inv_spectrogram(const_spec.T)
|
||||||
else:
|
else:
|
||||||
train_audio = ap.inv_mel_spectrogram(const_spec.T)
|
train_audio = ap.inv_melspectrogram(const_spec.T)
|
||||||
tb_logger.tb_train_audios(global_step,
|
tb_logger.tb_train_audios(global_step,
|
||||||
{'TrainAudio': train_audio},
|
{'TrainAudio': train_audio},
|
||||||
c.audio["sample_rate"])
|
c.audio["sample_rate"])
|
||||||
|
@ -304,11 +289,11 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
# print epoch stats
|
# print epoch stats
|
||||||
print(" | > EPOCH END -- GlobalStep:{} "
|
print(" | > EPOCH END -- GlobalStep:{} "
|
||||||
"AvgPostnetLoss:{:.5f} AvgDecoderLoss:{:.5f} "
|
"AvgPostnetLoss:{:.5f} AvgDecoderLoss:{:.5f} "
|
||||||
"AvgStopLoss:{:.5f} AvgAlignScore:{:3f} EpochTime:{:.2f} "
|
"AvgStopLoss:{:.5f} AvgGALoss:{:3f} EpochTime:{:.2f} "
|
||||||
"AvgStepTime:{:.2f} AvgLoaderTime:{:.2f}".format(
|
"AvgStepTime:{:.2f} AvgLoaderTime:{:.2f}".format(
|
||||||
global_step, keep_avg['avg_postnet_loss'],
|
global_step, keep_avg['avg_postnet_loss'],
|
||||||
keep_avg['avg_decoder_loss'], keep_avg['avg_stop_loss'],
|
keep_avg['avg_decoder_loss'], keep_avg['avg_stop_loss'],
|
||||||
keep_avg['avg_align_score'], epoch_time,
|
keep_avg['avg_ga_loss'], epoch_time,
|
||||||
keep_avg['avg_step_time'], keep_avg['avg_loader_time']),
|
keep_avg['avg_step_time'], keep_avg['avg_loader_time']),
|
||||||
flush=True)
|
flush=True)
|
||||||
# Plot Epoch Stats
|
# Plot Epoch Stats
|
||||||
|
@ -321,6 +306,8 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
"alignment_score": keep_avg['avg_align_score'],
|
"alignment_score": keep_avg['avg_align_score'],
|
||||||
"epoch_time": epoch_time
|
"epoch_time": epoch_time
|
||||||
}
|
}
|
||||||
|
if c.ga_alpha > 0:
|
||||||
|
epoch_stats['guided_attention_loss'] = keep_avg['avg_ga_loss']
|
||||||
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
|
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
|
||||||
if c.tb_model_param_stats:
|
if c.tb_model_param_stats:
|
||||||
tb_logger.tb_model_weights(model, global_step)
|
tb_logger.tb_model_weights(model, global_step)
|
||||||
|
@ -328,7 +315,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
|
def evaluate(model, criterion, ap, global_step, epoch):
|
||||||
data_loader = setup_loader(ap, model.decoder.r, is_val=True)
|
data_loader = setup_loader(ap, model.decoder.r, is_val=True)
|
||||||
if c.use_speaker_embedding:
|
if c.use_speaker_embedding:
|
||||||
speaker_mapping = load_speaker_mapping(OUT_PATH)
|
speaker_mapping = load_speaker_mapping(OUT_PATH)
|
||||||
|
@ -343,6 +330,8 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
|
||||||
if c.bidirectional_decoder:
|
if c.bidirectional_decoder:
|
||||||
eval_values_dict['avg_decoder_b_loss'] = 0 # decoder backward loss
|
eval_values_dict['avg_decoder_b_loss'] = 0 # decoder backward loss
|
||||||
eval_values_dict['avg_decoder_c_loss'] = 0 # decoder consistency loss
|
eval_values_dict['avg_decoder_c_loss'] = 0 # decoder consistency loss
|
||||||
|
if c.ga_alpha > 0:
|
||||||
|
eval_values_dict['avg_ga_loss'] = 0 # guidede attention loss
|
||||||
keep_avg = KeepAverage()
|
keep_avg = KeepAverage()
|
||||||
keep_avg.add_values(eval_values_dict)
|
keep_avg.add_values(eval_values_dict)
|
||||||
print("\n > Validation")
|
print("\n > Validation")
|
||||||
|
@ -362,37 +351,26 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
|
||||||
else:
|
else:
|
||||||
decoder_output, postnet_output, alignments, stop_tokens = model(
|
decoder_output, postnet_output, alignments, stop_tokens = model(
|
||||||
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
|
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
|
||||||
|
decoder_backward_output = None
|
||||||
|
|
||||||
# loss computation
|
# set the alignment lengths wrt reduction factor for guided attention
|
||||||
stop_loss = criterion_st(
|
if mel_lengths.max() % model.decoder.r != 0:
|
||||||
stop_tokens, stop_targets, mel_lengths) if c.stopnet else torch.zeros(1)
|
alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r
|
||||||
if c.loss_masking:
|
|
||||||
decoder_loss = criterion(decoder_output, mel_input,
|
|
||||||
mel_lengths)
|
|
||||||
if c.model in ["Tacotron", "TacotronGST"]:
|
|
||||||
postnet_loss = criterion(postnet_output, linear_input,
|
|
||||||
mel_lengths)
|
|
||||||
else:
|
|
||||||
postnet_loss = criterion(postnet_output, mel_input,
|
|
||||||
mel_lengths)
|
|
||||||
else:
|
else:
|
||||||
decoder_loss = criterion(decoder_output, mel_input)
|
alignment_lengths = mel_lengths // model.decoder.r
|
||||||
if c.model in ["Tacotron", "TacotronGST"]:
|
|
||||||
postnet_loss = criterion(postnet_output, linear_input)
|
|
||||||
else:
|
|
||||||
postnet_loss = criterion(postnet_output, mel_input)
|
|
||||||
loss = decoder_loss + postnet_loss + stop_loss
|
|
||||||
|
|
||||||
# backward decoder loss
|
# compute loss
|
||||||
|
loss_dict = criterion(postnet_output, decoder_output, mel_input,
|
||||||
|
linear_input, stop_tokens, stop_targets,
|
||||||
|
mel_lengths, decoder_backward_output,
|
||||||
|
alignments, alignment_lengths, text_lengths)
|
||||||
if c.bidirectional_decoder:
|
if c.bidirectional_decoder:
|
||||||
if c.loss_masking:
|
keep_avg.update_values({'avg_decoder_b_loss': loss_dict['decoder_backward_loss'].item(),
|
||||||
decoder_backward_loss = criterion(torch.flip(decoder_backward_output, dims=(1, )), mel_input, mel_lengths)
|
'avg_decoder_c_loss': loss_dict['decoder_c_loss'].item()})
|
||||||
else:
|
if c.ga_alpha > 0:
|
||||||
decoder_backward_loss = criterion(torch.flip(decoder_backward_output, dims=(1, )), mel_input)
|
keep_avg.update_values({'avg_ga_loss': loss_dict['ga_loss'].item()})
|
||||||
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_backward_output, dims=(1, )), decoder_output)
|
|
||||||
loss += decoder_backward_loss + decoder_c_loss
|
|
||||||
keep_avg.update_values({'avg_decoder_b_loss': decoder_backward_loss.item(), 'avg_decoder_c_loss': decoder_c_loss.item()})
|
|
||||||
|
|
||||||
|
# step time
|
||||||
step_time = time.time() - start_time
|
step_time = time.time() - start_time
|
||||||
epoch_time += step_time
|
epoch_time += step_time
|
||||||
|
|
||||||
|
@ -409,23 +387,27 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
|
||||||
|
|
||||||
keep_avg.update_values({
|
keep_avg.update_values({
|
||||||
'avg_postnet_loss':
|
'avg_postnet_loss':
|
||||||
float(postnet_loss.item()),
|
float(loss_dict['postnet_loss'].item()),
|
||||||
'avg_decoder_loss':
|
'avg_decoder_loss':
|
||||||
float(decoder_loss.item()),
|
float(loss_dict['decoder_loss'].item()),
|
||||||
'avg_stop_loss':
|
'avg_stop_loss':
|
||||||
float(stop_loss.item()),
|
float(loss_dict['stopnet_loss'].item()),
|
||||||
})
|
})
|
||||||
|
|
||||||
if num_iter % c.print_step == 0:
|
if num_iter % c.print_step == 0:
|
||||||
print(
|
print(
|
||||||
" | > TotalLoss: {:.5f} PostnetLoss: {:.5f} - {:.5f} DecoderLoss:{:.5f} - {:.5f} "
|
" | > TotalLoss: {:.5f} PostnetLoss: {:.5f} - {:.5f} DecoderLoss:{:.5f} - {:.5f} "
|
||||||
"StopLoss: {:.5f} - {:.5f} AlignScore: {:.4f} : {:.4f}"
|
"StopLoss: {:.5f} - {:.5f} GALoss: {:.5f} - {:.5f} AlignScore: {:.4f} - {:.4f}"
|
||||||
.format(loss.item(), postnet_loss.item(),
|
.format(loss_dict['loss'].item(),
|
||||||
|
loss_dict['postnet_loss'].item(),
|
||||||
keep_avg['avg_postnet_loss'],
|
keep_avg['avg_postnet_loss'],
|
||||||
decoder_loss.item(),
|
loss_dict['decoder_loss'].item(),
|
||||||
keep_avg['avg_decoder_loss'], stop_loss.item(),
|
keep_avg['avg_decoder_loss'],
|
||||||
keep_avg['avg_stop_loss'], align_score,
|
loss_dict['stopnet_loss'].item(),
|
||||||
keep_avg['avg_align_score']),
|
keep_avg['avg_stop_loss'],
|
||||||
|
loss_dict['ga_loss'].item(),
|
||||||
|
keep_avg['avg_ga_loss'],
|
||||||
|
align_score, keep_avg['avg_align_score']),
|
||||||
flush=True)
|
flush=True)
|
||||||
|
|
||||||
if args.rank == 0:
|
if args.rank == 0:
|
||||||
|
@ -447,7 +429,7 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
|
||||||
if c.model in ["Tacotron", "TacotronGST"]:
|
if c.model in ["Tacotron", "TacotronGST"]:
|
||||||
eval_audio = ap.inv_spectrogram(const_spec.T)
|
eval_audio = ap.inv_spectrogram(const_spec.T)
|
||||||
else:
|
else:
|
||||||
eval_audio = ap.inv_mel_spectrogram(const_spec.T)
|
eval_audio = ap.inv_melspectrogram(const_spec.T)
|
||||||
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
|
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
|
||||||
c.audio["sample_rate"])
|
c.audio["sample_rate"])
|
||||||
|
|
||||||
|
@ -456,13 +438,15 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
|
||||||
"loss_postnet": keep_avg['avg_postnet_loss'],
|
"loss_postnet": keep_avg['avg_postnet_loss'],
|
||||||
"loss_decoder": keep_avg['avg_decoder_loss'],
|
"loss_decoder": keep_avg['avg_decoder_loss'],
|
||||||
"stop_loss": keep_avg['avg_stop_loss'],
|
"stop_loss": keep_avg['avg_stop_loss'],
|
||||||
"alignment_score": keep_avg['avg_align_score']
|
"alignment_score": keep_avg['avg_align_score'],
|
||||||
}
|
}
|
||||||
|
|
||||||
if c.bidirectional_decoder:
|
if c.bidirectional_decoder:
|
||||||
epoch_stats['loss_decoder_backward'] = keep_avg['avg_decoder_b_loss']
|
epoch_stats['loss_decoder_backward'] = keep_avg['avg_decoder_b_loss']
|
||||||
align_b_img = alignments_backward[idx].data.cpu().numpy()
|
align_b_img = alignments_backward[idx].data.cpu().numpy()
|
||||||
eval_figures['alignment_backward'] = plot_alignment(align_b_img)
|
eval_figures['alignment_backward'] = plot_alignment(align_b_img)
|
||||||
|
if c.ga_alpha > 0:
|
||||||
|
epoch_stats['guided_attention_loss'] = keep_avg['avg_ga_loss']
|
||||||
tb_logger.tb_eval_stats(global_step, epoch_stats)
|
tb_logger.tb_eval_stats(global_step, epoch_stats)
|
||||||
tb_logger.tb_eval_figures(global_step, eval_figures)
|
tb_logger.tb_eval_figures(global_step, eval_figures)
|
||||||
|
|
||||||
|
@ -486,7 +470,7 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
|
||||||
style_wav = c.get("style_wav_for_test")
|
style_wav = c.get("style_wav_for_test")
|
||||||
for idx, test_sentence in enumerate(test_sentences):
|
for idx, test_sentence in enumerate(test_sentences):
|
||||||
try:
|
try:
|
||||||
wav, alignment, decoder_output, postnet_output, stop_tokens = synthesis(
|
wav, alignment, decoder_output, postnet_output, stop_tokens, _ = synthesis(
|
||||||
model,
|
model,
|
||||||
test_sentence,
|
test_sentence,
|
||||||
c,
|
c,
|
||||||
|
@ -565,14 +549,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
else:
|
else:
|
||||||
optimizer_st = None
|
optimizer_st = None
|
||||||
|
|
||||||
if c.loss_masking:
|
# setup criterion
|
||||||
criterion = L1LossMasked(c.seq_len_norm) if c.model in ["Tacotron", "TacotronGST"
|
criterion = TacotronLoss(c, stopnet_pos_weight=10.0, ga_sigma=0.4)
|
||||||
] else MSELossMasked(c.seq_len_norm)
|
|
||||||
else:
|
|
||||||
criterion = nn.L1Loss() if c.model in ["Tacotron", "TacotronGST"
|
|
||||||
] else nn.MSELoss()
|
|
||||||
criterion_st = BCELossMasked(
|
|
||||||
pos_weight=torch.tensor(10)) if c.stopnet else None
|
|
||||||
|
|
||||||
if args.restore_path:
|
if args.restore_path:
|
||||||
checkpoint = torch.load(args.restore_path, map_location='cpu')
|
checkpoint = torch.load(args.restore_path, map_location='cpu')
|
||||||
|
@ -600,8 +578,6 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
if use_cuda:
|
if use_cuda:
|
||||||
model.cuda()
|
model.cuda()
|
||||||
criterion.cuda()
|
criterion.cuda()
|
||||||
if criterion_st:
|
|
||||||
criterion_st.cuda()
|
|
||||||
|
|
||||||
# DISTRUBUTED
|
# DISTRUBUTED
|
||||||
if num_gpus > 1:
|
if num_gpus > 1:
|
||||||
|
@ -631,11 +607,10 @@ def main(args): # pylint: disable=redefined-outer-name
|
||||||
model.decoder_backward.set_r(r)
|
model.decoder_backward.set_r(r)
|
||||||
print(" > Number of outputs per iteration:", model.decoder.r)
|
print(" > Number of outputs per iteration:", model.decoder.r)
|
||||||
|
|
||||||
train_loss, global_step = train(model, criterion, criterion_st,
|
train_loss, global_step = train(model, criterion, optimizer,
|
||||||
optimizer, optimizer_st, scheduler, ap,
|
optimizer_st, scheduler, ap,
|
||||||
global_step, epoch)
|
global_step, epoch)
|
||||||
val_loss = evaluate(model, criterion, criterion_st, ap, global_step,
|
val_loss = evaluate(model, criterion, ap, global_step, epoch)
|
||||||
epoch)
|
|
||||||
print(" | > Training Loss: {:.5f} Validation Loss: {:.5f}".format(
|
print(" | > Training Loss: {:.5f} Validation Loss: {:.5f}".format(
|
||||||
train_loss, val_loss),
|
train_loss, val_loss),
|
||||||
flush=True)
|
flush=True)
|
||||||
|
|
|
@ -31,7 +31,7 @@ class AudioProcessor(object):
|
||||||
**_):
|
**_):
|
||||||
|
|
||||||
print(" > Setting up Audio Processor...")
|
print(" > Setting up Audio Processor...")
|
||||||
|
# setup class attributed
|
||||||
self.sample_rate = sample_rate
|
self.sample_rate = sample_rate
|
||||||
self.num_mels = num_mels
|
self.num_mels = num_mels
|
||||||
self.min_level_db = min_level_db or 0
|
self.min_level_db = min_level_db or 0
|
||||||
|
|
Загрузка…
Ссылка в новой задаче