Remove preemphasis from audio processing

This commit is contained in:
Eren G 2018-07-13 14:56:05 +02:00
Родитель dac8fdffa9
Коммит 0ef3c0ac3f
5 изменённых файлов: 29 добавлений и 34 удалений

Просмотреть файл

@ -16,7 +16,7 @@ class LJSpeechDataset(Dataset):
def __init__(self, csv_file, root_dir, outputs_per_step, sample_rate,
text_cleaner, num_mels, min_level_db, frame_shift_ms,
frame_length_ms, preemphasis, ref_level_db, num_freq, power,
min_seq_len=0):
min_mel_freq, max_mel_freq, min_seq_len=0):
with open(csv_file, "r", encoding="utf8") as f:
self.frames = [line.split('|') for line in f]
@ -26,7 +26,8 @@ class LJSpeechDataset(Dataset):
self.cleaners = text_cleaner
self.min_seq_len = min_seq_len
self.ap = AudioProcessor(sample_rate, num_mels, min_level_db, frame_shift_ms,
frame_length_ms, preemphasis, ref_level_db, num_freq, power)
frame_length_ms, preemphasis, ref_level_db, num_freq, power,
min_mel_freq, max_mel_freq)
print(" > Reading LJSpeech from - {}".format(root_dir))
print(" | > Number of instances : {}".format(len(self.frames)))
self._sort_frames()

Просмотреть файл

@ -352,6 +352,8 @@ def main(args):
c.ref_level_db,
c.num_freq,
c.power,
c.min_mel_freq,
c.max_mel_freq,
min_seq_len=c.min_seq_len
)
@ -372,7 +374,9 @@ def main(args):
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
c.power,
c.min_mel_freq,
c.max_mel_freq
)
val_loader = DataLoader(val_dataset, batch_size=c.eval_batch_size,

Просмотреть файл

@ -59,11 +59,11 @@ class AudioProcessor(object):
def _db_to_amp(self, x):
return np.power(10.0, x * 0.05)
def apply_preemphasis(self, x):
return signal.lfilter([1, -self.preemphasis], [1], x)
def apply_inv_preemphasis(self, x):
return signal.lfilter([1], [1, -self.preemphasis], x)
# def apply_preemphasis(self, x):
# return signal.lfilter([1, -self.preemphasis], [1], x)
#
# def apply_inv_preemphasis(self, x):
# return signal.lfilter([1], [1, -self.preemphasis], x)
def spectrogram(self, y):
# D = self._stft(self.apply_preemphasis(y))
@ -105,7 +105,7 @@ class AudioProcessor(object):
return y
def melspectrogram(self, y):
D = self._stft(self.apply_preemphasis(y))
D = self._stft(y)
S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db
return self._normalize(S)

Просмотреть файл

@ -40,7 +40,7 @@ def create_experiment_folder(root_path, model_name, debug):
date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I:%M%p")
if debug:
commit_hash = 'debug'
else:
else:
commit_hash = get_commit_hash()
output_folder = os.path.join(root_path, date_str + '-' + model_name + '-' + commit_hash)
os.makedirs(output_folder, exist_ok=True)
@ -135,21 +135,6 @@ def lr_decay(init_lr, global_step, warmup_steps):
return lr
def create_attn_mask(N, T, g=0.05):
r'''creating attn mask for guided attention
TODO: vectorize'''
M = np.zeros([N, T])
for t in range(T):
for n in range(N):
val = 20 * np.exp(-pow((n/N)-(t/T), 2.0)/g)
M[n, t] = val
e_x = np.exp(M - np.max(M))
M = e_x / e_x.sum(axis=0) # only difference
M = torch.FloatTensor(M).t().cuda()
M = torch.stack([M]*32)
return M
def mk_decay(init_mk, max_epoch, n_epoch):
return init_mk * ((max_epoch - n_epoch) / max_epoch)
@ -159,6 +144,20 @@ def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
def sequence_mask(sequence_length, max_len=None):
if max_len is None:
max_len = sequence_length.data.max()
batch_size = sequence_length.size(0)
seq_range = torch.arange(0, max_len).long()
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
if sequence_length.is_cuda:
seq_range_expand = seq_range_expand.cuda()
seq_length_expand = (sequence_length.unsqueeze(1)
.expand_as(seq_range_expand))
return seq_range_expand < seq_length_expand
class Progbar(object):
"""Displays a progress bar.
Args:

Просмотреть файл

@ -1,9 +0,0 @@
def get_param_size(model):
params = 0
for p in model.parameters():
tmp = 1
for x in p.size():
tmp *= x
params += tmp
return params