Audio Precessing class, passing data fetching argummetns from config

This commit is contained in:
Eren Golge 2018-01-24 08:04:25 -08:00
Родитель 4014e974d5
Коммит 2a20b7c2ac
6 изменённых файлов: 117 добавлений и 81 удалений

Просмотреть файл

@ -2,22 +2,27 @@ import pandas as pd
import os
import numpy as np
import collections
import librosa
from torch.utils.data import Dataset
from Tacotron.utils.text import text_to_sequence
from Tacotron.utils.audio import *
from Tacotron.utils.data import prepare_data, pad_data, pad_per_step
from TTS.utils.text import text_to_sequence
from TTS.utils.audio import AudioProcessor
from TTS.utils.data import prepare_data, pad_data, pad_per_step
class LJSpeechDataset(Dataset):
def __init__(self, csv_file, root_dir, outputs_per_step, sample_rate,
cleaners):
text_cleaner, num_mels, min_level_db, frame_shift_ms,
frame_length_ms, preemphasis, ref_level_db, num_freq, power):
self.frames = pd.read_csv(csv_file, sep='|', header=None)
self.root_dir = root_dir
self.outputs_per_step = outputs_per_step
self.sample_rate = sample_rate
self.cleaners = cleaners
self.cleaners = text_cleaner
self.ap = AudioProcessor(sample_rate, num_mels, min_level_db, frame_shift_ms,
frame_length_ms, preemphasis, ref_level_db, num_freq, power
)
print(" > Reading LJSpeech from - {}".format(root_dir))
print(" | > Number of instances : {}".format(len(self.frames)))
@ -53,8 +58,8 @@ class LJSpeechDataset(Dataset):
text = prepare_data(text).astype(np.int32)
wav = prepare_data(wav)
magnitude = np.array([spectrogram(w) for w in wav])
mel = np.array([melspectrogram(w) for w in wav])
magnitude = np.array([self.ap.spectrogram(w) for w in wav])
mel = np.array([self.ap.melspectrogram(w) for w in wav])
timesteps = mel.shape[2]
# PAD with zeros that can be divided by outputs per step

Просмотреть файл

@ -3,7 +3,7 @@ import torch
from torch.autograd import Variable
from torch import nn
from utils.text.symbols import symbols
from Tacotron.layers.tacotron import Prenet, Encoder, Decoder, CBHG
from TTS.layers.tacotron import Prenet, Encoder, Decoder, CBHG
class Tacotron(nn.Module):
def __init__(self, embedding_dim=256, linear_dim=1025, mel_dim=80,

Просмотреть файл

@ -6,6 +6,7 @@ import torch
import signal
import argparse
import importlib
import pickle
import numpy as np
import torch.nn as nn
@ -22,7 +23,6 @@ from models.tacotron import Tacotron
use_cuda = torch.cuda.is_available()
def main(args):
# setup output paths and read configs
@ -33,6 +33,11 @@ def main(args):
CHECKPOINT_PATH = os.path.join(OUT_PATH, 'checkpoints')
shutil.copyfile(args.config_path, os.path.join(OUT_PATH, 'config.json'))
# save config to tmp place to be loaded by subsequent modules.
file_name = str(os.getpid())
tmp_path = os.path.join("/tmp/", file_name+'_tts')
pickle.dump(c, open(tmp_path, "wb"))
# Ctrl+C handler to remove empty experiment folder
def signal_handler(signal, frame):
print(" !! Pressed Ctrl+C !!")
@ -44,7 +49,15 @@ def main(args):
os.path.join(c.data_path, 'wavs'),
c.r,
c.sample_rate,
c.text_cleaner
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
)
model = Tacotron(c.embedding_size,

Просмотреть файл

@ -1,108 +1,126 @@
import os
import librosa
import pickle
import numpy as np
from scipy import signal
_mel_basis = None
global c
def save_wav(wav, path):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
librosa.output.write_wav(path, wav.astype(np.int16), c.sample_rate)
class AudioProcessor(object):
def __init__(self, sample_rate, num_mels, min_level_db, frame_shift_ms,
frame_length_ms, preemphasis, ref_level_db, num_freq, power,
griffin_lim_iters=None):
self.sample_rate = sample_rate
self.num_mels = num_mels
self.min_level_db = min_level_db
self.frame_shift_ms = frame_shift_ms
self.frame_length_ms = frame_length_ms
self.preemphasis = preemphasis
self.ref_level_db = ref_level_db
self.num_freq = num_freq
self.power = power
self.griffin_lim_iters = griffin_lim_iters
def _linear_to_mel(spectrogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectrogram)
def save_wav(self, wav, path):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
librosa.output.write_wav(path, wav.astype(np.int16), self.sample_rate)
def _build_mel_basis():
n_fft = (c.num_freq - 1) * 2
return librosa.filters.mel(c.sample_rate, n_fft, n_mels=c.num_mels)
def _linear_to_mel(self, spectrogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = self._build_mel_basis()
return np.dot(_mel_basis, spectrogram)
def _normalize(S):
return np.clip((S - c.min_level_db) / -c.min_level_db, 0, 1)
def _build_mel_basis(self):
n_fft = (self.num_freq - 1) * 2
return librosa.filters.mel(self.sample_rate, n_fft, n_mels=self.num_mels)
def _denormalize(S):
return (np.clip(S, 0, 1) * -c.min_level_db) + c.min_level_db
def _normalize(self, S):
return np.clip((S - self.min_level_db) / -self.min_level_db, 0, 1)
def _stft_parameters():
n_fft = (c.num_freq - 1) * 2
hop_length = int(c.frame_shift_ms / 1000 * c.sample_rate)
win_length = int(c.frame_length_ms / 1000 * c.sample_rate)
return n_fft, hop_length, win_length
def _denormalize(self, S):
return (np.clip(S, 0, 1) * -self.min_level_db) + self.min_level_db
def _amp_to_db(x):
return 20 * np.log10(np.maximum(1e-5, x))
def _stft_parameters(self):
n_fft = (self.num_freq - 1) * 2
hop_length = int(self.frame_shift_ms / 1000 * self.sample_rate)
win_length = int(self.frame_length_ms / 1000 * self.sample_rate)
return n_fft, hop_length, win_length
def _db_to_amp(x):
return np.power(10.0, x * 0.05)
def _amp_to_db(self, x):
return 20 * np.log10(np.maximum(1e-5, x))
def preemphasis(x):
return signal.lfilter([1, -c.preemphasis], [1], x)
def _db_to_amp(self, x):
return np.power(10.0, x * 0.05)
def inv_preemphasis(x):
return signal.lfilter([1], [1, -c.preemphasis], x)
def apply_preemphasis(self, x):
return signal.lfilter([1, -self.preemphasis], [1], x)
def spectrogram(y):
D = _stft(preemphasis(y))
S = _amp_to_db(np.abs(D)) - c.ref_level_db
return _normalize(S)
def apply_inv_preemphasis(self, x):
return signal.lfilter([1], [1, -self.preemphasis], x)
def inv_spectrogram(spectrogram):
'''Converts spectrogram to waveform using librosa'''
S = _denormalize(spectrogram)
S = _db_to_amp(S + c.ref_level_db) # Convert back to linear
# Reconstruct phase
return inv_preemphasis(_griffin_lim(S ** c.power))
def spectrogram(self, y):
D = self._stft(self.apply_preemphasis(y))
S = self._amp_to_db(np.abs(D)) - self.ref_level_db
return self._normalize(S)
def _griffin_lim(S):
'''librosa implementation of Griffin-Lim
Based on https://github.com/librosa/librosa/issues/434
'''
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = _istft(S_complex * angles)
for i in range(c.griffin_lim_iters):
angles = np.exp(1j * np.angle(_stft(y)))
def inv_spectrogram(self, spectrogram):
'''Converts spectrogram to waveform using librosa'''
S = _denormalize(spectrogram)
S = _db_to_amp(S + self.ref_level_db) # Convert back to linear
# Reconstruct phase
return inv_preemphasis(_griffin_lim(S ** self.power))
def _griffin_lim(self, S):
'''librosa implementation of Griffin-Lim
Based on https://github.com/librosa/librosa/issues/434
'''
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = _istft(S_complex * angles)
return y
for i in range(self.griffin_lim_iters):
angles = np.exp(1j * np.angle(_stft(y)))
y = _istft(S_complex * angles)
return y
def _istft(y):
_, hop_length, win_length = _stft_parameters()
return librosa.istft(y, hop_length=hop_length, win_length=win_length)
def _istft(self, y):
_, hop_length, win_length = _stft_parameters()
return librosa.istft(y, hop_length=hop_length, win_length=win_length)
def melspectrogram(y):
D = _stft(preemphasis(y))
S = _amp_to_db(_linear_to_mel(np.abs(D)))
return _normalize(S)
def melspectrogram(self, y):
D = self._stft(self.apply_preemphasis(y))
S = self._amp_to_db(self._linear_to_mel(np.abs(D)))
return self._normalize(S)
def _stft(y):
n_fft, hop_length, win_length = _stft_parameters()
return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
def _stft(self, y):
n_fft, hop_length, win_length = self._stft_parameters()
return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
def find_endpoint(wav, threshold_db=-40, min_silence_sec=0.8):
window_length = int(c.sample_rate * min_silence_sec)
hop_length = int(window_length / 4)
threshold = _db_to_amp(threshold_db)
for x in range(hop_length, len(wav) - window_length, hop_length):
if np.max(wav[x:x + window_length]) < threshold:
return x + hop_length
return len(wav)
def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
window_length = int(self.sample_rate * min_silence_sec)
hop_length = int(window_length / 4)
threshold = _db_to_amp(threshold_db)
for x in range(hop_length, len(wav) - window_length, hop_length):
if np.max(wav[x:x + window_length]) < threshold:
return x + hop_length
return len(wav)

Просмотреть файл

@ -1,8 +1,8 @@
#-*- coding: utf-8 -*-
import re
from Tacotron.utils.text import cleaners
from Tacotron.utils.text.symbols import symbols
from TTS.utils.text import cleaners
from TTS.utils.text.symbols import symbols
# Mappings from symbol to numeric ID and vice versa:

Просмотреть файл

@ -7,7 +7,7 @@ Defines the set of symbols used in text input to the model.
The default is a set of ASCII characters that works well for English or text that has been run
through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details.
'''
from Tacotron.utils.text import cmudict
from TTS.utils.text import cmudict
_pad = '_'
_eos = '~'