This commit is contained in:
Eren Golge 2018-04-26 08:44:29 -07:00
Родитель 7c260f481d
Коммит 3c701c9d10
1 изменённых файлов: 55 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,55 @@
import os
import copy
import torch
import unittest
import numpy as np
from torch import optim
from TTS.utils.generic_utils import load_config
from TTS.layers.losses import L1LossMasked
from TTS.models.tacotron import Tacotron
torch.manual_seed(1)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
file_path = os.path.dirname(os.path.realpath(__file__))
c = load_config(os.path.join(file_path, 'test_config.json'))
class TacotronTrainTest(unittest.TestCase):
def test_train_step(self):
input = torch.randint(0, 24, (8, 128)).long().to(device)
mel_spec = torch.rand(8, 30, c.num_mels).to(device)
linear_spec = torch.rand(8, 30, c.num_freq).to(device)
mel_lengths = torch.randint(20, 30, (8,)).long().to(device)
criterion = L1LossMasked().to(device)
model = Tacotron(c.embedding_size,
c.num_freq,
c.num_mels,
c.r).to(device)
model.train()
model_ref = copy.deepcopy(model)
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
assert (param - param_ref).sum() == 0, param
count += 1
optimizer = optim.Adam(model.parameters(), lr=c.lr)
for i in range(5):
mel_out, linear_out, align = model.forward(input, mel_spec)
optimizer.zero_grad()
loss = criterion(mel_out, mel_spec, mel_lengths)
loss = 0.5 * loss + 0.5 * criterion(linear_out, linear_spec, mel_lengths)
loss.backward()
optimizer.step()
# check parameter changes
count = 0
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
# ignore pre-higway layer since it works conditional
if count not in [139, 59]:
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(count, param.shape, param, param_ref)
count += 1