зеркало из https://github.com/mozilla/TTS.git
more loss tests
This commit is contained in:
Родитель
8af75cad46
Коммит
79cca4ac80
|
@ -18,7 +18,7 @@ class L1LossMasked(nn.Module):
|
|||
length: A Variable containing a LongTensor of size (batch,)
|
||||
which contains the length of each data in a batch.
|
||||
Returns:
|
||||
loss: An average loss value masked by the length.
|
||||
loss: An average loss value in range [0, 1] masked by the length.
|
||||
"""
|
||||
# mask: (batch, max_len, 1)
|
||||
target.requires_grad = False
|
||||
|
@ -44,7 +44,7 @@ class MSELossMasked(nn.Module):
|
|||
length: A Variable containing a LongTensor of size (batch,)
|
||||
which contains the length of each data in a batch.
|
||||
Returns:
|
||||
loss: An average loss value masked by the length.
|
||||
loss: An average loss value in range [0, 1] masked by the length.
|
||||
"""
|
||||
# mask: (batch, max_len, 1)
|
||||
target.requires_grad = False
|
||||
|
|
|
@ -118,6 +118,7 @@ class EncoderTests(unittest.TestCase):
|
|||
|
||||
class L1LossMaskedTests(unittest.TestCase):
|
||||
def test_in_out(self):
|
||||
# test input == target
|
||||
layer = L1LossMasked()
|
||||
dummy_input = T.ones(4, 8, 128).float()
|
||||
dummy_target = T.ones(4, 8, 128).float()
|
||||
|
@ -125,11 +126,14 @@ class L1LossMaskedTests(unittest.TestCase):
|
|||
output = layer(dummy_input, dummy_target, dummy_length)
|
||||
assert output.item() == 0.0
|
||||
|
||||
# test input != target
|
||||
dummy_input = T.ones(4, 8, 128).float()
|
||||
dummy_target = T.zeros(4, 8, 128).float()
|
||||
dummy_length = (T.ones(4) * 8).long()
|
||||
output = layer(dummy_input, dummy_target, dummy_length)
|
||||
assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])
|
||||
|
||||
# test if padded values of input makes any difference
|
||||
dummy_input = T.ones(4, 8, 128).float()
|
||||
dummy_target = T.zeros(4, 8, 128).float()
|
||||
dummy_length = (T.arange(5, 9)).long()
|
||||
|
@ -137,3 +141,11 @@ class L1LossMaskedTests(unittest.TestCase):
|
|||
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
|
||||
output = layer(dummy_input + mask, dummy_target, dummy_length)
|
||||
assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])
|
||||
|
||||
dummy_input = T.rand(4, 8, 128).float()
|
||||
dummy_target = dummy_input.detach()
|
||||
dummy_length = (T.arange(5, 9)).long()
|
||||
mask = (
|
||||
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
|
||||
output = layer(dummy_input + mask, dummy_target, dummy_length)
|
||||
assert output.item() == 0, "0 vs {}".format(output.data[0])
|
||||
|
|
Загрузка…
Ссылка в новой задаче