This commit is contained in:
Eren Golge 2018-05-10 16:36:07 -07:00
Родитель 2c1f66a0fc
Коммит 7c40455edd
3 изменённых файлов: 0 добавлений и 405 удалений

Просмотреть файл

@ -1,6 +1,5 @@
# coding: utf-8
import torch
from torch.autograd import Variable
from torch import nn
from TTS.utils.text.symbols import symbols
from TTS.layers.tacotron import Prenet, Encoder, Decoder, CBHG

312
module.py
Просмотреть файл

@ -1,312 +0,0 @@
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import numpy as np
use_cuda = torch.cuda.is_available()
class SeqLinear(nn.Module):
"""
Linear layer for sequences
"""
def __init__(self, input_size, output_size, time_dim=2):
"""
:param input_size: dimension of input
:param output_size: dimension of output
:param time_dim: index of time dimension
"""
super(SeqLinear, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.time_dim = time_dim
self.linear = nn.Linear(input_size, output_size)
def forward(self, input_):
"""
:param input_: sequences
:return: outputs
"""
batch_size = input_.size()[0]
if self.time_dim == 2:
input_ = input_.transpose(1, 2).contiguous()
input_ = input_.view(-1, self.input_size)
out = self.linear(input_).view(batch_size, -1, self.output_size)
if self.time_dim == 2:
out = out.contiguous().transpose(1, 2)
return out
class Prenet(nn.Module):
"""
Prenet before passing through the network
"""
def __init__(self, input_size, hidden_size, output_size):
"""
:param input_size: dimension of input
:param hidden_size: dimension of hidden unit
:param output_size: dimension of output
"""
super(Prenet, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.hidden_size = hidden_size
self.layer = nn.Sequential(OrderedDict([
('fc1', SeqLinear(self.input_size, self.hidden_size)),
('relu1', nn.ReLU()),
('dropout1', nn.Dropout(0.5)),
('fc2', SeqLinear(self.hidden_size, self.output_size)),
('relu2', nn.ReLU()),
('dropout2', nn.Dropout(0.5)),
]))
def forward(self, input_):
out = self.layer(input_)
return out
class CBHG(nn.Module):
"""
CBHG Module
"""
def __init__(self, hidden_size, K=16, projection_size=128, num_gru_layers=2, max_pool_kernel_size=2, is_post=False):
"""
:param hidden_size: dimension of hidden unit
:param K: # of convolution banks
:param projection_size: dimension of projection unit
:param num_gru_layers: # of layers of GRUcell
:param max_pool_kernel_size: max pooling kernel size
:param is_post: whether post processing or not
"""
super(CBHG, self).__init__()
self.hidden_size = hidden_size
self.num_gru_layers = num_gru_layers
self.projection_size = projection_size
self.convbank_list = nn.ModuleList()
self.convbank_list.append(nn.Conv1d(in_channels=projection_size,
out_channels=hidden_size,
kernel_size=1,
padding=int(np.floor(1 / 2))))
for i in range(2, K + 1):
self.convbank_list.append(nn.Conv1d(in_channels=hidden_size,
out_channels=hidden_size,
kernel_size=i,
padding=int(np.floor(i / 2))))
self.batchnorm_list = nn.ModuleList()
for i in range(1, K + 1):
self.batchnorm_list.append(nn.BatchNorm1d(hidden_size))
convbank_outdim = hidden_size * K
if is_post:
self.conv_projection_1 = nn.Conv1d(in_channels=convbank_outdim,
out_channels=hidden_size * 2,
kernel_size=3,
padding=int(np.floor(3 / 2)))
self.conv_projection_2 = nn.Conv1d(in_channels=hidden_size * 2,
out_channels=projection_size,
kernel_size=3,
padding=int(np.floor(3 / 2)))
self.batchnorm_proj_1 = nn.BatchNorm1d(hidden_size * 2)
else:
self.conv_projection_1 = nn.Conv1d(in_channels=convbank_outdim,
out_channels=hidden_size,
kernel_size=3,
padding=int(np.floor(3 / 2)))
self.conv_projection_2 = nn.Conv1d(in_channels=hidden_size,
out_channels=projection_size,
kernel_size=3,
padding=int(np.floor(3 / 2)))
self.batchnorm_proj_1 = nn.BatchNorm1d(hidden_size)
self.batchnorm_proj_2 = nn.BatchNorm1d(projection_size)
self.max_pool = nn.MaxPool1d(max_pool_kernel_size, stride=1, padding=1)
self.highway = Highwaynet(self.projection_size)
self.gru = nn.GRU(self.projection_size, self.hidden_size, num_layers=2,
batch_first=True,
bidirectional=True)
def _conv_fit_dim(self, x, kernel_size=3):
if kernel_size % 2 == 0:
return x[:, :, :-1]
else:
return x
def forward(self, input_):
input_ = input_.contiguous()
batch_size = input_.size()[0]
convbank_list = list()
convbank_input = input_
# Convolution bank filters
for k, (conv, batchnorm) in enumerate(zip(self.convbank_list, self.batchnorm_list)):
convbank_input = F.relu(batchnorm(self._conv_fit_dim(
conv(convbank_input), k + 1).contiguous()))
convbank_list.append(convbank_input)
# Concatenate all features
conv_cat = torch.cat(convbank_list, dim=1)
# Max pooling
conv_cat = self.max_pool(conv_cat)[:, :, :-1]
# Projection
conv_projection = F.relu(self.batchnorm_proj_1(
self._conv_fit_dim(self.conv_projection_1(conv_cat))))
conv_projection = self.batchnorm_proj_2(self._conv_fit_dim(
self.conv_projection_2(conv_projection))) + input_
# Highway networks
highway = self.highway.forward(conv_projection)
highway = torch.transpose(highway, 1, 2)
# Bidirectional GRU
if use_cuda:
init_gru = Variable(torch.zeros(
2 * self.num_gru_layers, batch_size, self.hidden_size)).cuda()
else:
init_gru = Variable(torch.zeros(
2 * self.num_gru_layers, batch_size, self.hidden_size))
self.gru.flatten_parameters()
out, _ = self.gru(highway, init_gru)
return out
class Highwaynet(nn.Module):
"""
Highway network
"""
def __init__(self, num_units, num_layers=4):
"""
:param num_units: dimension of hidden unit
:param num_layers: # of highway layers
"""
super(Highwaynet, self).__init__()
self.num_units = num_units
self.num_layers = num_layers
self.gates = nn.ModuleList()
self.linears = nn.ModuleList()
for _ in range(self.num_layers):
self.linears.append(SeqLinear(num_units, num_units))
self.gates.append(SeqLinear(num_units, num_units))
def forward(self, input_):
out = input_
# highway gated function
for fc1, fc2 in zip(self.linears, self.gates):
h = F.relu(fc1.forward(out))
t = F.sigmoid(fc2.forward(out))
c = 1. - t
out = h * t + out * c
return out
class AttentionDecoder(nn.Module):
"""
Decoder with attention mechanism (Vinyals et al.)
"""
def __init__(self, num_units, num_mels, outputs_per_step):
"""
:param num_units: dimension of hidden units
"""
super(AttentionDecoder, self).__init__()
self.num_units = num_units
self.num_mels = num_mels
self.outputs_per_step = outputs_per_step
self.v = nn.Linear(num_units, 1, bias=False)
self.W1 = nn.Linear(num_units, num_units, bias=False)
self.W2 = nn.Linear(num_units, num_units, bias=False)
self.attn_grucell = nn.GRUCell(num_units // 2, num_units)
self.gru1 = nn.GRUCell(num_units, num_units)
self.gru2 = nn.GRUCell(num_units, num_units)
self.attn_projection = nn.Linear(num_units * 2, num_units)
self.out = nn.Linear(num_units, num_mels * outputs_per_step)
def forward(self, decoder_input, memory, attn_hidden, gru1_hidden, gru2_hidden):
memory_len = memory.size()[1]
batch_size = memory.size()[0]
# Get keys
keys = self.W1(memory.contiguous().view(-1, self.num_units))
keys = keys.view(-1, memory_len, self.num_units)
# Get hidden state (query) passed through GRUcell
d_t = self.attn_grucell(decoder_input, attn_hidden)
# Duplicate query with same dimension of keys for matrix operation (Speed up)
d_t_duplicate = self.W2(d_t).unsqueeze(1).expand_as(memory)
# Calculate attention score and get attention weights
attn_weights = self.v(
F.tanh(keys + d_t_duplicate).view(-1, self.num_units)).view(-1, memory_len, 1)
attn_weights = attn_weights.squeeze(2)
attn_weights = F.softmax(attn_weights, dim=0)
# Concatenate with original query
d_t_prime = torch.bmm(attn_weights.view(
[batch_size, 1, -1]), memory).squeeze(1)
# Residual GRU
gru1_input = self.attn_projection(torch.cat([d_t, d_t_prime], 1))
gru1_hidden = self.gru1(gru1_input, gru1_hidden)
gru2_input = gru1_input + gru1_hidden
gru2_hidden = self.gru2(gru2_input, gru2_hidden)
bf_out = gru2_input + gru2_hidden
# Output
output = self.out(bf_out).view(-1, self.num_mels,
self.outputs_per_step)
return output, d_t, gru1_hidden, gru2_hidden
def inithidden(self, batch_size):
if use_cuda:
attn_hidden = Variable(torch.zeros(
batch_size, self.num_units), requires_grad=False).cuda()
gru1_hidden = Variable(torch.zeros(
batch_size, self.num_units), requires_grad=False).cuda()
gru2_hidden = Variable(torch.zeros(
batch_size, self.num_units), requires_grad=False).cuda()
else:
attn_hidden = Variable(torch.zeros(
batch_size, self.num_units), requires_grad=False)
gru1_hidden = Variable(torch.zeros(
batch_size, self.num_units), requires_grad=False)
gru2_hidden = Variable(torch.zeros(
batch_size, self.num_units), requires_grad=False)
return attn_hidden, gru1_hidden, gru2_hidden

Просмотреть файл

@ -1,92 +0,0 @@
# -*- coding: utf-8 -*-
from network import *
from data import inv_spectrogram, find_endpoint, save_wav, spectrogram
import numpy as np
import argparse
import os
import sys
import io
from text import text_to_sequence
use_cuda = torch.cuda.is_available()
def main(args):
# Make model
if use_cuda:
model = nn.DataParallel(Tacotron().cuda())
# Load checkpoint
try:
checkpoint = torch.load(os.path.join(
hp.checkpoint_path, 'checkpoint_%d.pth.tar' % args.restore_step))
model.load_state_dict(checkpoint['model'])
print("\n--------model restored at step %d--------\n" %
args.restore_step)
except:
raise FileNotFoundError("\n------------Model not exists------------\n")
# Evaluation
model = model.eval()
# Make result folder if not exists
if not os.path.exists(hp.output_path):
os.mkdir(hp.output_path)
# Sentences for generation
sentences = [
"I try my best to translate text to speech. But I know I need more work",
"The new Firefox, Fast for good.",
"Technology is continually providing us with new ways to create and publish stories.",
"For these stories to achieve their full impact, it requires tool.",
"I am allien and I am here to destron your world."
]
# Synthesis and save to wav files
for i, text in enumerate(sentences):
wav = generate(model, text)
path = os.path.join(hp.output_path, 'result_%d_%d.wav' %
(args.restore_step, i + 1))
with open(path, 'wb') as f:
f.write(wav)
f.close()
print("save wav file at step %d ..." % (i + 1))
def generate(model, text):
# Text to index sequence
cleaner_names = [x.strip() for x in hp.cleaners.split(',')]
seq = np.expand_dims(np.asarray(text_to_sequence(
text, cleaner_names), dtype=np.int32), axis=0)
# Provide [GO] Frame
mel_input = np.zeros([seq.shape[0], hp.num_mels, 1], dtype=np.float32)
# Variables
characters = Variable(torch.from_numpy(seq).type(
torch.cuda.LongTensor), volatile=True).cuda()
mel_input = Variable(torch.from_numpy(mel_input).type(
torch.cuda.FloatTensor), volatile=True).cuda()
# Spectrogram to wav
_, linear_output = model.forward(characters, mel_input)
wav = inv_spectrogram(linear_output[0].data.cpu().numpy())
wav = wav[:find_endpoint(wav)]
out = io.BytesIO()
save_wav(wav, out)
return out.getvalue()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--restore_step', type=int,
help='Global step to restore checkpoint', default=0)
parser.add_argument('--batch_size', type=int, help='Batch size', default=1)
args = parser.parse_args()
main(args)