This commit is contained in:
root 2020-01-15 12:07:19 +01:00
Родитель 3cbf9052f7
Коммит 8dfedb691e
2 изменённых файлов: 4 добавлений и 5 удалений

Просмотреть файл

@ -38,7 +38,7 @@
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"eval_batch_size":16,
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], // ONLY TACOTRON - set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled.
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
"loss_masking": true, // enable / disable loss masking against the sequence padding.
// VALIDATION
@ -47,11 +47,10 @@
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
"noam_schedule": false,
"noam_schedule": false, // use noam warmup and lr schedule.
"grad_clip": 1, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
"wd": 0.000001, // Weight decay weight.
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
@ -61,7 +60,7 @@
"prenet_dropout": true, // enable/disable dropout at prenet.
// ATTENTION
"attention_type": "graves", // 'original' or 'graves'
"attention_type": "original", // 'original' or 'graves'
"attention_heads": 5, // number of attention heads (only for 'graves')
"attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
"windowing": false, // Enables attention windowing. Used only in eval mode.

Просмотреть файл

@ -151,7 +151,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
global_step += 1
# setup lr
if c.lr_decay:
if c.noam_schedule:
scheduler.step()
optimizer.zero_grad()
if optimizer_st: