Change logging for the new cluster system

This commit is contained in:
Eren 2018-07-05 17:30:42 +02:00
Родитель eccdc61cd4
Коммит 934639128d
1 изменённых файлов: 37 добавлений и 19 удалений

Просмотреть файл

@ -78,7 +78,7 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
mel_input = data[3]
mel_lengths = data[4]
stop_targets = data[5]
# set stop targets view, we predict a single stop token per r frames prediction
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // c.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float()
@ -89,10 +89,10 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
# setup lr
current_lr = lr_decay(c.lr, current_step, c.warmup_steps)
current_lr_st = lr_decay(c.lr, current_step, c.warmup_steps)
for params_group in optimizer.param_groups:
params_group['lr'] = current_lr
for params_group in optimizer_st.param_groups:
params_group['lr'] = current_lr_st
@ -106,7 +106,7 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
mel_lengths = mel_lengths.cuda()
linear_input = linear_input.cuda()
stop_targets = stop_targets.cuda()
# forward pass
mel_output, linear_output, alignments, stop_tokens =\
model.forward(text_input, mel_input)
@ -128,13 +128,13 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
print(" | > Iteration skipped!!")
continue
optimizer.step()
# backpass and check the grad norm for stop loss
stop_loss.backward()
grad_norm_st, skip_flag = check_update(model.module.decoder.stopnet, 0.5, 100)
if skip_flag:
optimizer_st.zero_grad()
print(" | > Iteration skipped fro stopnet!!")
print(" | | > Iteration skipped fro stopnet!!")
continue
optimizer_st.step()
@ -142,12 +142,23 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
epoch_time += step_time
# update
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
('linear_loss', linear_loss.item()),
('mel_loss', mel_loss.item()),
('stop_loss', stop_loss.item()),
('grad_norm', grad_norm.item()),
('grad_norm_st', grad_norm_st.item())])
# progbar.update(num_iter+1, values=[('total_loss', loss.item()),
# ('linear_loss', linear_loss.item()),
# ('mel_loss', mel_loss.item()),
# ('stop_loss', stop_loss.item()),
# ('grad_norm', grad_norm.item()),
# ('grad_norm_st', grad_norm_st.item())])
if current_step % c.print_step == 0:
print(" | | > TotalLoss: {:.5f}\t LinearLoss: {:.5f}\t MelLoss: \
{:.5f}\t StopLoss: {:.5f}\t GradNorm: {:.5f}\t \
GradNormST: {:.5f}".format(loss.item(),
linear_loss.item(),
mel_loss.item(),
stop_loss.item(),
grad_norm.item(),
grad_norm_st.item()))
avg_linear_loss += linear_loss.item()
avg_mel_loss += mel_loss.item()
avg_stop_loss += stop_loss.item()
@ -219,7 +230,7 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
avg_mel_loss = 0
avg_stop_loss = 0
print(" | > Validation")
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
# progbar = Progbar(len(data_loader.dataset) / c.batch_size)
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
with torch.no_grad():
for num_iter, data in enumerate(data_loader):
@ -232,7 +243,7 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
mel_input = data[3]
mel_lengths = data[4]
stop_targets = data[5]
# set stop targets view, we predict a single stop token per r frames prediction
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // c.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float()
@ -262,10 +273,16 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
epoch_time += step_time
# update
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
('linear_loss', linear_loss.item()),
('mel_loss', mel_loss.item()),
('stop_loss', stop_loss.item())])
# progbar.update(num_iter+1, values=[('total_loss', loss.item()),
# ('linear_loss', linear_loss.item()),
# ('mel_loss', mel_loss.item()),
# ('stop_loss', stop_loss.item())])
if current_step % c.print_step == 0:
print(" | | > TotalLoss: {:.5f}\t LinearLoss: {:.5f}\t MelLoss: \
{:.5f}\t StopLoss: {:.5f}\t".format(loss.item(),
linear_loss.item(),
mel_loss.item(),
stop_loss.item()))
avg_linear_loss += linear_loss.item()
avg_mel_loss += mel_loss.item()
@ -366,7 +383,7 @@ def main(args):
optimizer_st = optim.Adam(model.decoder.stopnet.parameters(), lr=c.lr)
criterion = L1LossMasked()
criterion_st = nn.BCELoss()
criterion_st = nn.BCELoss()
if args.restore_path:
checkpoint = torch.load(args.restore_path)
@ -405,6 +422,7 @@ def main(args):
train_loss, current_step = train(
model, criterion, criterion_st, train_loader, optimizer, optimizer_st, epoch)
val_loss = evaluate(model, criterion, criterion_st, val_loader, current_step)
print(" >>> Train Loss: {:.5f}\t Validation Loss: {:.5f}".format(train_loss, val_loss))
best_loss = save_best_model(model, optimizer, val_loss,
best_loss, OUT_PATH,
current_step, epoch)