зеркало из https://github.com/mozilla/TTS.git
Change logging for the new cluster system
This commit is contained in:
Родитель
eccdc61cd4
Коммит
934639128d
56
train.py
56
train.py
|
@ -78,7 +78,7 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
|||
mel_input = data[3]
|
||||
mel_lengths = data[4]
|
||||
stop_targets = data[5]
|
||||
|
||||
|
||||
# set stop targets view, we predict a single stop token per r frames prediction
|
||||
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // c.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float()
|
||||
|
@ -89,10 +89,10 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
|||
# setup lr
|
||||
current_lr = lr_decay(c.lr, current_step, c.warmup_steps)
|
||||
current_lr_st = lr_decay(c.lr, current_step, c.warmup_steps)
|
||||
|
||||
|
||||
for params_group in optimizer.param_groups:
|
||||
params_group['lr'] = current_lr
|
||||
|
||||
|
||||
for params_group in optimizer_st.param_groups:
|
||||
params_group['lr'] = current_lr_st
|
||||
|
||||
|
@ -106,7 +106,7 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
|||
mel_lengths = mel_lengths.cuda()
|
||||
linear_input = linear_input.cuda()
|
||||
stop_targets = stop_targets.cuda()
|
||||
|
||||
|
||||
# forward pass
|
||||
mel_output, linear_output, alignments, stop_tokens =\
|
||||
model.forward(text_input, mel_input)
|
||||
|
@ -128,13 +128,13 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
|||
print(" | > Iteration skipped!!")
|
||||
continue
|
||||
optimizer.step()
|
||||
|
||||
|
||||
# backpass and check the grad norm for stop loss
|
||||
stop_loss.backward()
|
||||
grad_norm_st, skip_flag = check_update(model.module.decoder.stopnet, 0.5, 100)
|
||||
if skip_flag:
|
||||
optimizer_st.zero_grad()
|
||||
print(" | > Iteration skipped fro stopnet!!")
|
||||
print(" | | > Iteration skipped fro stopnet!!")
|
||||
continue
|
||||
optimizer_st.step()
|
||||
|
||||
|
@ -142,12 +142,23 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
|||
epoch_time += step_time
|
||||
|
||||
# update
|
||||
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||
('linear_loss', linear_loss.item()),
|
||||
('mel_loss', mel_loss.item()),
|
||||
('stop_loss', stop_loss.item()),
|
||||
('grad_norm', grad_norm.item()),
|
||||
('grad_norm_st', grad_norm_st.item())])
|
||||
# progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||
# ('linear_loss', linear_loss.item()),
|
||||
# ('mel_loss', mel_loss.item()),
|
||||
# ('stop_loss', stop_loss.item()),
|
||||
# ('grad_norm', grad_norm.item()),
|
||||
# ('grad_norm_st', grad_norm_st.item())])
|
||||
|
||||
if current_step % c.print_step == 0:
|
||||
print(" | | > TotalLoss: {:.5f}\t LinearLoss: {:.5f}\t MelLoss: \
|
||||
{:.5f}\t StopLoss: {:.5f}\t GradNorm: {:.5f}\t \
|
||||
GradNormST: {:.5f}".format(loss.item(),
|
||||
linear_loss.item(),
|
||||
mel_loss.item(),
|
||||
stop_loss.item(),
|
||||
grad_norm.item(),
|
||||
grad_norm_st.item()))
|
||||
|
||||
avg_linear_loss += linear_loss.item()
|
||||
avg_mel_loss += mel_loss.item()
|
||||
avg_stop_loss += stop_loss.item()
|
||||
|
@ -219,7 +230,7 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
|
|||
avg_mel_loss = 0
|
||||
avg_stop_loss = 0
|
||||
print(" | > Validation")
|
||||
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
|
||||
# progbar = Progbar(len(data_loader.dataset) / c.batch_size)
|
||||
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
|
||||
with torch.no_grad():
|
||||
for num_iter, data in enumerate(data_loader):
|
||||
|
@ -232,7 +243,7 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
|
|||
mel_input = data[3]
|
||||
mel_lengths = data[4]
|
||||
stop_targets = data[5]
|
||||
|
||||
|
||||
# set stop targets view, we predict a single stop token per r frames prediction
|
||||
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // c.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float()
|
||||
|
@ -262,10 +273,16 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
|
|||
epoch_time += step_time
|
||||
|
||||
# update
|
||||
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||
('linear_loss', linear_loss.item()),
|
||||
('mel_loss', mel_loss.item()),
|
||||
('stop_loss', stop_loss.item())])
|
||||
# progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||
# ('linear_loss', linear_loss.item()),
|
||||
# ('mel_loss', mel_loss.item()),
|
||||
# ('stop_loss', stop_loss.item())])
|
||||
if current_step % c.print_step == 0:
|
||||
print(" | | > TotalLoss: {:.5f}\t LinearLoss: {:.5f}\t MelLoss: \
|
||||
{:.5f}\t StopLoss: {:.5f}\t".format(loss.item(),
|
||||
linear_loss.item(),
|
||||
mel_loss.item(),
|
||||
stop_loss.item()))
|
||||
|
||||
avg_linear_loss += linear_loss.item()
|
||||
avg_mel_loss += mel_loss.item()
|
||||
|
@ -366,7 +383,7 @@ def main(args):
|
|||
optimizer_st = optim.Adam(model.decoder.stopnet.parameters(), lr=c.lr)
|
||||
|
||||
criterion = L1LossMasked()
|
||||
criterion_st = nn.BCELoss()
|
||||
criterion_st = nn.BCELoss()
|
||||
|
||||
if args.restore_path:
|
||||
checkpoint = torch.load(args.restore_path)
|
||||
|
@ -405,6 +422,7 @@ def main(args):
|
|||
train_loss, current_step = train(
|
||||
model, criterion, criterion_st, train_loader, optimizer, optimizer_st, epoch)
|
||||
val_loss = evaluate(model, criterion, criterion_st, val_loader, current_step)
|
||||
print(" >>> Train Loss: {:.5f}\t Validation Loss: {:.5f}".format(train_loss, val_loss))
|
||||
best_loss = save_best_model(model, optimizer, val_loss,
|
||||
best_loss, OUT_PATH,
|
||||
current_step, epoch)
|
||||
|
|
Загрузка…
Ссылка в новой задаче