This commit is contained in:
root 2020-01-13 14:53:56 +01:00
Родитель 7f117e3fd6
Коммит a510baa79c
1 изменённых файлов: 115 добавлений и 101 удалений

Просмотреть файл

@ -32,16 +32,17 @@
"import numpy as np\n",
"from tqdm import tqdm as tqdm\n",
"from torch.utils.data import DataLoader\n",
"from TTS.models.tacotron2 import Tacotron2\n",
"from TTS.datasets.TTSDataset import MyDataset\n",
"from TTS.layers.losses import L1LossMasked\n",
"from TTS.utils.audio import AudioProcessor\n",
"from TTS.utils.visual import plot_spectrogram\n",
"from TTS.utils.generic_utils import load_config, setup_model\n",
"from TTS.datasets.preprocess import ljspeech\n",
"from TTS.utils.generic_utils import load_config, setup_model, sequence_mask\n",
"from TTS.utils.text.symbols import symbols, phonemes\n",
"\n",
"%matplotlib inline\n",
"\n",
"import os\n",
"os.environ['CUDA_VISIBLE_DEVICES']='1'"
"os.environ['CUDA_VISIBLE_DEVICES']='2'"
]
},
{
@ -68,22 +69,23 @@
"metadata": {},
"outputs": [],
"source": [
"OUT_PATH = \"/home/erogol/Data/Mozilla/wavernn/4841/\"\n",
"DATA_PATH = \"/home/erogol/Data/Mozilla/\"\n",
"DATASET = \"mozilla\"\n",
"OUT_PATH = \"/data/rw/pit/data/turkish-vocoder/\"\n",
"DATA_PATH = \"/data/rw/home/Turkish\"\n",
"DATASET = \"ljspeech\"\n",
"METADATA_FILE = \"metadata.txt\"\n",
"CONFIG_PATH = \"/media/erogol/data_ssd/Data/models/mozilla_models/4841/config.json\"\n",
"MODEL_FILE = \"/media/erogol/data_ssd/Data/models/mozilla_models/4841/best_model.pth.tar\"\n",
"DRY_RUN = False # if False, does not generate output files, only computes loss and visuals.\n",
"CONFIG_PATH = \"/data/rw/pit/keep/turkish-January-08-2020_01+56AM-ca5e133/config.json\"\n",
"MODEL_FILE = \"/data/rw/pit/keep/turkish-January-08-2020_01+56AM-ca5e133/checkpoint_255000.pth.tar\"\n",
"BATCH_SIZE = 32\n",
"\n",
"QUANTIZED_WAV = False\n",
"QUANTIZE_BIT = 9\n",
"DRY_RUN = False # if False, does not generate output files, only computes loss and visuals.\n",
"\n",
"use_cuda = torch.cuda.is_available()\n",
"print(\" > CUDA enabled: \", use_cuda)\n",
"\n",
"C = load_config(CONFIG_PATH)\n",
"ap = AudioProcessor(bits=9, **C.audio)\n",
"C.prenet_dropout = False\n",
"C.separate_stopnet = True"
"ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)"
]
},
{
@ -92,35 +94,32 @@
"metadata": {},
"outputs": [],
"source": [
"preprocessor = importlib.import_module('datasets.preprocess')\n",
"preprocessor = getattr(preprocessor, DATASET.lower())\n",
"\n",
"dataset = MyDataset(DATA_PATH, METADATA_FILE, C.r, C.text_cleaner, ap, preprocessor, use_phonemes=C.use_phonemes, phoneme_cache_path=C.phoneme_cache_path)\n",
"loader = DataLoader(dataset, batch_size=BATCH_SIZE, num_workers=4, collate_fn=dataset.collate_fn, shuffle=False, drop_last=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from TTS.utils.text.symbols import symbols, phonemes\n",
"from TTS.utils.generic_utils import sequence_mask\n",
"from TTS.layers.losses import L1LossMasked\n",
"from TTS.utils.text.symbols import symbols, phonemes\n",
"\n",
"# load the model\n",
"num_chars = len(phonemes) if C.use_phonemes else len(symbols)\n",
"model = setup_model(num_chars, C)\n",
"# TODO: multiple speaker\n",
"model = setup_model(num_chars, num_speakers=0, c=C)\n",
"checkpoint = torch.load(MODEL_FILE)\n",
"model.load_state_dict(checkpoint['model'])\n",
"print(checkpoint['step'])\n",
"model.eval()\n",
"model.decoder.set_r(checkpoint['r'])\n",
"if use_cuda:\n",
" model = model.cuda()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"preprocessor = importlib.import_module('TTS.datasets.preprocess')\n",
"preprocessor = getattr(preprocessor, DATASET.lower())\n",
"meta_data = preprocessor(DATA_PATH,METADATA_FILE)\n",
"dataset = MyDataset(checkpoint['r'], C.text_cleaner, ap, meta_data, use_phonemes=C.use_phonemes, phoneme_cache_path=C.phoneme_cache_path, enable_eos_bos=C.enable_eos_bos_chars)\n",
"loader = DataLoader(dataset, batch_size=BATCH_SIZE, num_workers=4, collate_fn=dataset.collate_fn, shuffle=False, drop_last=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -137,73 +136,92 @@
"import pickle\n",
"\n",
"file_idxs = []\n",
"metadata = []\n",
"losses = []\n",
"postnet_losses = []\n",
"criterion = L1LossMasked()\n",
"for data in tqdm(loader):\n",
" # setup input data\n",
" text_input = data[0]\n",
" text_lengths = data[1]\n",
" linear_input = data[2]\n",
" mel_input = data[3]\n",
" mel_lengths = data[4]\n",
" stop_targets = data[5]\n",
" item_idx = data[6]\n",
" \n",
" # dispatch data to GPU\n",
" if use_cuda:\n",
" text_input = text_input.cuda()\n",
" text_lengths = text_lengths.cuda()\n",
" mel_input = mel_input.cuda()\n",
" mel_lengths = mel_lengths.cuda()\n",
"# linear_input = linear_input.cuda()\n",
" stop_targets = stop_targets.cuda()\n",
" \n",
" mask = sequence_mask(text_lengths)\n",
" mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)\n",
" \n",
" # compute mel specs from linear spec if model is Tacotron\n",
" mel_specs = []\n",
" if C.model == \"Tacotron\":\n",
" postnet_outputs = postnet_outputs.data.cpu().numpy()\n",
" for b in range(postnet_outputs.shape[0]):\n",
" postnet_output = postnet_outputs[b]\n",
" mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n",
" postnet_outputs = torch.stack(mel_specs)\n",
" \n",
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
" loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n",
" losses.append(loss.item())\n",
" postnet_losses.append(loss_postnet.item())\n",
"with torch.no_grad():\n",
" for data in tqdm(loader):\n",
" # setup input data\n",
" text_input = data[0]\n",
" text_lengths = data[1]\n",
" linear_input = data[3]\n",
" mel_input = data[4]\n",
" mel_lengths = data[5]\n",
" stop_targets = data[6]\n",
" item_idx = data[7]\n",
"\n",
" # dispatch data to GPU\n",
" if use_cuda:\n",
" text_input = text_input.cuda()\n",
" text_lengths = text_lengths.cuda()\n",
" mel_input = mel_input.cuda()\n",
" mel_lengths = mel_lengths.cuda()\n",
"\n",
" mask = sequence_mask(text_lengths)\n",
" mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)\n",
" \n",
" # compute loss\n",
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
" loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n",
" losses.append(loss.item())\n",
" postnet_losses.append(loss_postnet.item())\n",
"\n",
" # compute mel specs from linear spec if model is Tacotron\n",
" if C.model == \"Tacotron\":\n",
" mel_specs = []\n",
" postnet_outputs = postnet_outputs.data.cpu().numpy()\n",
" for b in range(postnet_outputs.shape[0]):\n",
" postnet_output = postnet_outputs[b]\n",
" mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n",
" postnet_outputs = torch.stack(mel_specs)\n",
" elif C.model == \"Tacotron2\":\n",
" postnet_outputs = postnet_outputs.detach().cpu().numpy()\n",
" alignments = alignments.detach().cpu().numpy()\n",
"\n",
" if not DRY_RUN:\n",
" for idx in range(text_input.shape[0]):\n",
" wav_file_path = item_idx[idx]\n",
" wav = ap.load_wav(wav_file_path)\n",
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n",
" file_idxs.append(file_name)\n",
"\n",
" # quantize and save wav\n",
" if QUANTIZED_WAV:\n",
" wavq = ap.quantize(wav)\n",
" np.save(wavq_path, wavq)\n",
"\n",
" # save TTS mel\n",
" mel = postnet_outputs[idx]\n",
" mel_length = mel_lengths[idx]\n",
" mel = mel[:mel_length, :].T\n",
" np.save(mel_path, mel)\n",
"\n",
" metadata.append([wav_file_path, mel_path])\n",
"\n",
" # for wavernn\n",
" if not DRY_RUN:\n",
" for idx in range(text_input.shape[0]):\n",
" wav_file_path = item_idx[idx]\n",
" wav = ap.load_wav(wav_file_path)\n",
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n",
" file_idxs.append(file_name)\n",
"\n",
"# # quantize and save wav\n",
"# wavq = ap.quantize(wav)\n",
"# np.save(wavq_path, wavq)\n",
"\n",
" # save TTS mel\n",
" mel = postnet_outputs[idx]\n",
" mel = mel.data.cpu().numpy()\n",
" mel_length = mel_lengths[idx]\n",
" mel = mel[:mel_length, :].T\n",
" np.save(mel_path, mel)\n",
"\n",
" # save GL voice\n",
" # wav_gen = ap.inv_mel_spectrogram(mel.T) # mel to wav\n",
" # wav_gen = ap.quantize(wav_gen)\n",
" # np.save(wav_path, wav_gen)\n",
"\n",
"if not DRY_RUN:\n",
" pickle.dump(file_idxs, open(OUT_PATH+\"/dataset_ids.pkl\", \"wb\")) \n",
" pickle.dump(file_idxs, open(OUT_PATH+\"/dataset_ids.pkl\", \"wb\")) \n",
" \n",
" # for pwgan\n",
" with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n",
" for data in metadata:\n",
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")\n",
"\n",
"print(np.mean(losses))\n",
"print(np.mean(postnet_losses))"
" print(np.mean(losses))\n",
" print(np.mean(postnet_losses))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# for pwgan\n",
"with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n",
" for data in metadata:\n",
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")"
]
},
{
@ -219,8 +237,9 @@
"metadata": {},
"outputs": [],
"source": [
"# plot posnet output\n",
"idx = 1\n",
"mel_example = postnet_outputs[idx].data.cpu().numpy()\n",
"mel_example = postnet_outputs[idx]\n",
"plot_spectrogram(mel_example[:mel_lengths[idx], :], ap);\n",
"print(mel_example[:mel_lengths[1], :].shape)"
]
@ -231,6 +250,7 @@
"metadata": {},
"outputs": [],
"source": [
"# plot decoder output\n",
"mel_example = mel_outputs[idx].data.cpu().numpy()\n",
"plot_spectrogram(mel_example[:mel_lengths[idx], :], ap);\n",
"print(mel_example[:mel_lengths[1], :].shape)"
@ -242,6 +262,7 @@
"metadata": {},
"outputs": [],
"source": [
"# plot GT specgrogram\n",
"wav = ap.load_wav(item_idx[idx])\n",
"melt = ap.melspectrogram(wav)\n",
"print(melt.shape)\n",
@ -278,13 +299,6 @@
"plt.colorbar()\n",
"plt.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {