Graves attention and setting attn type by config.json

This commit is contained in:
Eren Golge 2019-10-31 16:24:09 +01:00
Родитель 84d81b6579
Коммит adf9ebd629
7 изменённых файлов: 96 добавлений и 45 удалений

Просмотреть файл

@ -60,6 +60,8 @@
"prenet_dropout": true, // enable/disable dropout at prenet.
// ATTENTION
"attention_type": "original", // 'original' or 'graves'
"attention_heads": 5, // number of attention heads (only for 'graves')
"attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
"windowing": false, // Enables attention windowing. Used only in eval mode.
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster.

Просмотреть файл

@ -106,25 +106,33 @@ class LocationLayer(nn.Module):
class GravesAttention(nn.Module):
""" Graves attention as described here:
- https://arxiv.org/abs/1910.10288
"""
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
def __init__(self, query_dim, K, attention_alignment=0.05):
def __init__(self, query_dim, K):
super(GravesAttention, self).__init__()
self._mask_value = -float("inf")
self._mask_value = 0.0
self.K = K
self.attention_alignment = attention_alignment
# self.attention_alignment = 0.05
self.epsilon = 1e-5
self.J = None
self.N_a = nn.Sequential(
nn.Linear(query_dim, query_dim//2),
nn.Tanh(),
nn.Linear(query_dim//2, 3*K))
self.mu_tm1 = None
self.attention_weights = None
self.mu_prev = None
def init_states(self, inputs):
if self.J is None or inputs.shape[1] > self.J.shape[-1]:
self.J = torch.arange(0, inputs.shape[1]).expand_as(torch.Tensor(inputs.shape[0], self.K, inputs.shape[1])).to(inputs.device)
self.mu_tm1 = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device)
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
def preprocess_inputs(self, inputs):
return None
def forward(self, query, inputs, mask):
"""
@ -143,9 +151,12 @@ class GravesAttention(nn.Module):
k_t = gbk_t[:, 2, :]
# attention GMM parameters
g_t = torch.softmax(g_t, dim=-1) + self.epsilon # distribution weight
sig_t = torch.exp(b_t) + self.epsilon # variance
mu_t = self.mu_tm1 + self.attention_alignment * torch.exp(k_t) # mean
# g_t = torch.softmax(g_t, dim=-1) + self.epsilon # distribution weight
# sig_t = torch.exp(b_t) + self.epsilon # variance
# mu_t = self.mu_prev + self.attention_alignment * torch.exp(k_t) # mean
sig_t = torch.pow(torch.nn.functional.softplus(b_t), 2)
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
g_t = (torch.softmax(g_t, dim=-1) / sig_t) * self.COEF
g_t = g_t.unsqueeze(2).expand(g_t.size(0),
g_t.size(1),
@ -156,27 +167,33 @@ class GravesAttention(nn.Module):
# attention weights
phi_t = g_t * torch.exp(-0.5 * sig_t * (mu_t_ - j)**2)
alpha_t = self.COEF * torch.sum(phi_t, 1)
alpha_t = torch.sum(phi_t, 1)
# apply masking
# if mask is not None:
# alpha_t.data.masked_fill_(~mask, self._mask_value)
if mask is not None:
alpha_t.data.masked_fill_(~mask, self._mask_value)
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
self.attention_weights = alpha_t
self.mu_prev = mu_t
breakpoint()
c_t = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
self.mu_tm1 = mu_t
return c_t, mu_t, alpha_t
return context
class Attention(nn.Module):
class OriginalAttention(nn.Module):
"""Following the methods proposed here:
- https://arxiv.org/abs/1712.05884
- https://arxiv.org/abs/1807.06736 + state masking at inference
- Using sigmoid instead of softmax normalization
- Attention windowing at inference time
"""
# Pylint gets confused by PyTorch conventions here
#pylint: disable=attribute-defined-outside-init
def __init__(self, query_dim, embedding_dim, attention_dim,
location_attention, attention_location_n_filters,
attention_location_kernel_size, windowing, norm, forward_attn,
trans_agent, forward_attn_mask):
super(Attention, self).__init__()
super(OriginalAttention, self).__init__()
self.query_layer = Linear(
query_dim, attention_dim, bias=False, init_gain='tanh')
self.inputs_layer = Linear(
@ -229,6 +246,9 @@ class Attention(nn.Module):
if self.windowing:
self.init_win_idx()
def preprocess_inputs(self, inputs):
return self.inputs_layer(inputs)
def update_location_attention(self, alignments):
self.attention_weights_cum += alignments
@ -337,3 +357,21 @@ class Attention(nn.Module):
ta_input = torch.cat([context, query.squeeze(1)], dim=-1)
self.u = torch.sigmoid(self.ta(ta_input))
return context
def init_attn(attn_type, query_dim, embedding_dim, attention_dim,
location_attention, attention_location_n_filters,
attention_location_kernel_size, windowing, norm, forward_attn,
trans_agent, forward_attn_mask, attn_K):
if attn_type == "original":
return OriginalAttention(query_dim, embedding_dim, attention_dim,
location_attention,
attention_location_n_filters,
attention_location_kernel_size, windowing,
norm, forward_attn, trans_agent,
forward_attn_mask)
elif attn_type == "graves":
return GravesAttention(query_dim, attn_K)
else:
raise RuntimeError(
" [!] Given Attention Type '{attn_type}' is not exist.")

Просмотреть файл

@ -1,7 +1,7 @@
# coding: utf-8
import torch
from torch import nn
from .common_layers import Prenet, Attention, Linear, GravesAttention
from .common_layers import Prenet, init_attn, Linear
class BatchNormConv1d(nn.Module):
@ -263,9 +263,9 @@ class Decoder(nn.Module):
# Pylint gets confused by PyTorch conventions here
#pylint: disable=attribute-defined-outside-init
def __init__(self, in_features, memory_dim, r, memory_size, attn_windowing,
def __init__(self, in_features, memory_dim, r, memory_size, attn_type, attn_windowing,
attn_norm, prenet_type, prenet_dropout, forward_attn,
trans_agent, forward_attn_mask, location_attn,
trans_agent, forward_attn_mask, location_attn, attn_K,
separate_stopnet, speaker_embedding_dim):
super(Decoder, self).__init__()
self.r_init = r
@ -288,18 +288,19 @@ class Decoder(nn.Module):
# attention_rnn generates queries for the attention mechanism
self.attention_rnn = nn.GRUCell(in_features + 128, self.query_dim)
# self.attention = Attention(query_dim=self.query_dim,
# embedding_dim=in_features,
# attention_dim=128,
# location_attention=location_attn,
# attention_location_n_filters=32,
# attention_location_kernel_size=31,
# windowing=attn_windowing,
# norm=attn_norm,
# forward_attn=forward_attn,
# trans_agent=trans_agent,
# forward_attn_mask=forward_attn_mask)
self.attention = GravesAttention(self.query_dim, 5)
self.attention = init_attn(attn_type=attn_type,
query_dim=self.query_dim,
embedding_dim=in_features,
attention_dim=128,
location_attention=location_attn,
attention_location_n_filters=32,
attention_location_kernel_size=31,
windowing=attn_windowing,
norm=attn_norm,
forward_attn=forward_attn,
trans_agent=trans_agent,
forward_attn_mask=forward_attn_mask,
attn_K=attn_K)
# (processed_memory | attention context) -> |Linear| -> decoder_RNN_input
self.project_to_decoder_in = nn.Linear(256 + in_features, 256)
# decoder_RNN_input -> |RNN| -> RNN_state
@ -343,7 +344,7 @@ class Decoder(nn.Module):
]
self.context_vec = inputs.data.new(B, self.in_features).zero_()
# cache attention inputs
# self.processed_inputs = self.attention.inputs_layer(inputs)
self.processed_inputs = self.attention.preprocess_inputs(inputs)
def _parse_outputs(self, outputs, attentions, stop_tokens):
# Back to batch first
@ -363,7 +364,7 @@ class Decoder(nn.Module):
torch.cat((processed_memory, self.context_vec), -1),
self.attention_rnn_hidden)
self.context_vec = self.attention(
self.attention_rnn_hidden, inputs, mask)
self.attention_rnn_hidden, inputs, self.processed_inputs, mask)
# Concat RNN output and attention context vector
decoder_input = self.project_to_decoder_in(
torch.cat((self.attention_rnn_hidden, self.context_vec), -1))

Просмотреть файл

@ -2,7 +2,7 @@ import torch
from torch.autograd import Variable
from torch import nn
from torch.nn import functional as F
from .common_layers import Attention, Prenet, Linear
from .common_layers import init_attn, Prenet, Linear
class ConvBNBlock(nn.Module):
@ -98,9 +98,9 @@ class Encoder(nn.Module):
class Decoder(nn.Module):
# Pylint gets confused by PyTorch conventions here
#pylint: disable=attribute-defined-outside-init
def __init__(self, in_features, memory_dim, r, attn_win, attn_norm,
def __init__(self, in_features, memory_dim, r, attn_type, attn_win, attn_norm,
prenet_type, prenet_dropout, forward_attn, trans_agent,
forward_attn_mask, location_attn, separate_stopnet,
forward_attn_mask, location_attn, attn_K, separate_stopnet,
speaker_embedding_dim):
super(Decoder, self).__init__()
self.memory_dim = memory_dim
@ -128,7 +128,8 @@ class Decoder(nn.Module):
self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_features,
self.query_dim)
self.attention = Attention(query_dim=self.query_dim,
self.attention = init_attn(attn_type=attn_type,
query_dim=self.query_dim,
embedding_dim=in_features,
attention_dim=128,
location_attention=location_attn,
@ -138,7 +139,8 @@ class Decoder(nn.Module):
norm=attn_norm,
forward_attn=forward_attn,
trans_agent=trans_agent,
forward_attn_mask=forward_attn_mask)
forward_attn_mask=forward_attn_mask,
attn_K=attn_K)
self.decoder_rnn = nn.LSTMCell(self.query_dim + in_features,
self.decoder_rnn_dim, 1)

Просмотреть файл

@ -15,6 +15,7 @@ class Tacotron(nn.Module):
postnet_output_dim=1025,
decoder_output_dim=80,
memory_size=5,
attn_type='original',
attn_win=False,
gst=False,
attn_norm="sigmoid",
@ -24,6 +25,7 @@ class Tacotron(nn.Module):
trans_agent=False,
forward_attn_mask=False,
location_attn=True,
attn_K=5,
separate_stopnet=True,
bidirectional_decoder=False):
super(Tacotron, self).__init__()
@ -41,10 +43,10 @@ class Tacotron(nn.Module):
self.embedding.weight.data.normal_(0, 0.3)
# boilerplate model
self.encoder = Encoder(encoder_dim)
self.decoder = Decoder(decoder_dim, decoder_output_dim, r, memory_size, attn_win,
self.decoder = Decoder(decoder_dim, decoder_output_dim, r, memory_size, attn_type, attn_win,
attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask,
location_attn, separate_stopnet,
location_attn, attn_K, separate_stopnet,
proj_speaker_dim)
if self.bidirectional_decoder:
self.decoder_backward = copy.deepcopy(self.decoder)

Просмотреть файл

@ -14,6 +14,7 @@ class Tacotron2(nn.Module):
r,
postnet_output_dim=80,
decoder_output_dim=80,
attn_type='original',
attn_win=False,
attn_norm="softmax",
prenet_type="original",
@ -22,6 +23,7 @@ class Tacotron2(nn.Module):
trans_agent=False,
forward_attn_mask=False,
location_attn=True,
attn_K=5,
separate_stopnet=True,
bidirectional_decoder=False):
super(Tacotron2, self).__init__()
@ -42,10 +44,10 @@ class Tacotron2(nn.Module):
self.speaker_embeddings = None
self.speaker_embeddings_projected = None
self.encoder = Encoder(encoder_dim)
self.decoder = Decoder(decoder_dim, self.decoder_output_dim, r, attn_win,
self.decoder = Decoder(decoder_dim, self.decoder_output_dim, r, attn_type, attn_win,
attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask,
location_attn, separate_stopnet, proj_speaker_dim)
location_attn, attn_K, separate_stopnet, proj_speaker_dim)
if self.bidirectional_decoder:
self.decoder_backward = copy.deepcopy(self.decoder)
self.postnet = Postnet(self.decoder_output_dim)

Просмотреть файл

@ -287,6 +287,7 @@ def setup_model(num_chars, num_speakers, c):
decoder_output_dim=c.audio['num_mels'],
gst=c.use_gst,
memory_size=c.memory_size,
attn_type=c.attention_type,
attn_win=c.windowing,
attn_norm=c.attention_norm,
prenet_type=c.prenet_type,
@ -295,6 +296,7 @@ def setup_model(num_chars, num_speakers, c):
trans_agent=c.transition_agent,
forward_attn_mask=c.forward_attn_mask,
location_attn=c.location_attn,
attn_K=c.attention_heads,
separate_stopnet=c.separate_stopnet,
bidirectional_decoder=c.bidirectional_decoder)
elif c.model.lower() == "tacotron2":
@ -303,6 +305,7 @@ def setup_model(num_chars, num_speakers, c):
r=c.r,
postnet_output_dim=c.audio['num_mels'],
decoder_output_dim=c.audio['num_mels'],
attn_type=c.attention_type,
attn_win=c.windowing,
attn_norm=c.attention_norm,
prenet_type=c.prenet_type,
@ -311,6 +314,7 @@ def setup_model(num_chars, num_speakers, c):
trans_agent=c.transition_agent,
forward_attn_mask=c.forward_attn_mask,
location_attn=c.location_attn,
attn_K=c.attention_heads,
separate_stopnet=c.separate_stopnet,
bidirectional_decoder=c.bidirectional_decoder)
return model